Balla József, Balla György, Lakatos Béla, Jeney Viktória, Szentmihályi Klára
Debreceni Egyetem, Orvos- és Egészségtudományi Centrum I. Belgyógyászati Klinika, Szülészeti Klinika, Nefrológiai Tanszék, Neonatológiai Tanszék Debrecen.
Orv Hetil. 2007 Sep 9;148(36):1699-706. doi: 10.1556/OH.2007.28156.
Iron is essential for all living organism, although in excess amount it is dangerous via catalyzing the formation of reactive oxygen species. Absorption of iron is strictly controlled resulting in a fine balance of iron-loss and iron-uptake. In countries where the ingestion of heme-iron is significant by meal, great part of iron content in the body originates from heme. Heme derived from food is absorbed by a receptor-mediated manner by enterocytes of small intestine then it is degraded in a reaction catalyzed by heme oxygenase. Iron released from the porphyrin ring leaves enterocytes as transferrin associated iron. Prosthetic group of several proteins contains heme, therefore, it is synthesized by all cells. One of the most significant heme proteins is hemoglobin which transports oxygen in the erythrocytes. Hemoglobin released from erythrocyte during intravascular hemolysis binds to haptoglobin and is taken up by cells of the monocyte-macrophage lineage. Oxidation of hemoglobin (ferro) to methemoglobin (ferri) is inhibited by the structure of hemoglobin although it is not hindered. Superoxide anion is also formed in the reaction that initiates further free radical reactions. In contrast to ferrohemoglobin, methemoglobin readily releases heme, therefore, oxidation of hemoglobin drives the formation of free heme in plasma. Heme binds to a plasma protein, hemopexin, and is internalized by cells of monocyte-macrophage lineage in a receptor-mediated manner, then degraded in reaction catalysed by heme oxygenase. Heme is also taken up by plasma lipoproteins and endothelial cells leading to oxidation of LDL and subsequent endothelial cell damage. The purpose of this work was to summarize the processes related to heme.
铁对所有生物都是必不可少的,尽管过量的铁通过催化活性氧的形成而具有危险性。铁的吸收受到严格控制,从而实现铁流失和铁摄取的精细平衡。在那些通过饮食大量摄入血红素铁的国家,体内很大一部分铁含量源自血红素。食物中的血红素以受体介导的方式被小肠肠上皮细胞吸收,然后在血红素加氧酶催化的反应中被降解。从卟啉环释放的铁作为与转铁蛋白结合的铁离开肠上皮细胞。几种蛋白质的辅基含有血红素,因此,所有细胞都能合成血红素。最重要的血红素蛋白之一是血红蛋白,它在红细胞中运输氧气。血管内溶血期间从红细胞释放的血红蛋白与触珠蛋白结合,并被单核细胞 - 巨噬细胞系的细胞摄取。血红蛋白(亚铁)氧化为高铁血红蛋白(高铁)虽然不会受到血红蛋白结构的阻碍,但会受到抑制。超氧阴离子也在引发进一步自由基反应的反应中形成。与亚铁血红蛋白相反,高铁血红蛋白很容易释放血红素,因此,血红蛋白的氧化驱动血浆中游离血红素的形成。血红素与血浆蛋白血红素结合蛋白结合,并以受体介导的方式被单核细胞 - 巨噬细胞系的细胞内化,然后在血红素加氧酶催化的反应中降解。血红素也被血浆脂蛋白和内皮细胞摄取,导致低密度脂蛋白氧化和随后的内皮细胞损伤。这项工作的目的是总结与血红素相关的过程。