Suppr超能文献

血红蛋白和肌红蛋白作为生物系统中的还原剂。球蛋白与铜盐、铁盐及配合物的氧化还原反应。

Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.

作者信息

Postnikova G B, Shekhovtsova E A

机构信息

Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.

出版信息

Biochemistry (Mosc). 2016 Dec;81(13):1735-1753. doi: 10.1134/S0006297916130101.

Abstract

In addition to reversible O2 binding, respiratory proteins of the globin family, hemoglobin (Hb) and myoglobin (Mb), participate in redox reactions with various metal complexes, including biologically significant ones, such as those of copper and iron. HbO and MbO are present in cells in large amounts and, as redox agents, can contribute to maintaining cell redox state and resisting oxidative stress. Divalent copper complexes with high redox potentials (E, 200-600 mV) and high stability constants, such as [Cu(phen)], [Cu(dmphen)], and CuDTA oxidize ferrous heme proteins by the simple outer-sphere electron transfer mechanism through overlapping π-orbitals of the heme and the copper complex. Weaker oxidants, such as Cu2+, CuEDTA, CuNTA, CuCit, CuATP, and CuHis (E ≤ 100-150 mV) react with HbO and MbO through preliminary binding to the protein with substitution of the metal ligands with protein groups and subsequent intramolecular electron transfer in the complex (the site-specific outer-sphere electron transfer mechanism). Oxidation of HbO and MbO by potassium ferricyanide and Fe(3) complexes with NTA, EDTA, CDTA, ATP, 2,3-DPG, citrate, and pyrophosphate PP proceeds mainly through the simple outer-sphere electron transfer mechanism via the exposed heme edge. According to Marcus theory, the rate of this reaction correlates with the difference in redox potentials of the reagents and their self-exchange rates. For charged reagents, the reaction may be preceded by their nonspecific binding to the protein due to electrostatic interactions. The reactions of LbO with carboxylate Fe complexes, unlike its reactions with ferricyanide, occur via the site-specific outer-sphere electron transfer mechanism, even though the same reagents oxidize structurally similar MbO and cytochrome b via the simple outer-sphere electron transfer mechanism. Of particular biological interest is HbO and MbO transformation into met-forms in the presence of small amounts of metal ions or complexes (catalysis), which, until recently, had been demonstrated only for copper compounds with intermediate redox potentials. The main contribution to the reaction rate comes from copper binding to the "inner" histidines, His97 (0.66 nm from the heme) that forms a hydrogen bond with the heme propionate COO group, and the distal His64. The affinity of both histidines for copper is much lower than that of the surface histidines residues, and they are inaccessible for modification with chemical reagents. However, it was found recently that the high-potential Fe(3) complex, potassium ferricyanide (400 mV), at a 5 to 20% of molar protein concentration can be an efficient catalyst of MbO oxidation into metMb. The catalytic process includes binding of ferrocyanide anion in the region of the His119 residue due to the presence there of a large positive local electrostatic potential and existence of a "pocket" formed by Lys16, Ala19, Asp20, and Arg118 that is sufficient to accommodate [Fe(CN)]. Fast, proton-assisted reoxidation of the bound ferrocyanide by oxygen (which is required for completion of the catalytic cycle), unlike slow [Fe(CN)] oxidation in solution, is provided by the optimal location of neighboring protonated His113 and His116, as it occurs in the enzyme active site.

摘要

除了可逆的氧气结合外,珠蛋白家族的呼吸蛋白,即血红蛋白(Hb)和肌红蛋白(Mb),还参与与各种金属配合物的氧化还原反应,包括具有生物学意义的金属配合物,如铜和铁的配合物。HbO和MbO大量存在于细胞中,作为氧化还原剂,有助于维持细胞的氧化还原状态并抵抗氧化应激。具有高氧化还原电位(E,200 - 600 mV)和高稳定性常数的二价铜配合物,如[Cu(phen)]、[Cu(dmphen)]和CuDTA,通过血红素和铜配合物的重叠π轨道,通过简单的外层电子转移机制氧化亚铁血红素蛋白。较弱的氧化剂,如Cu2+、CuEDTA、CuNTA、CuCit、CuATP和CuHis(E≤100 - 150 mV),通过先与蛋白质结合,金属配体被蛋白质基团取代,随后在配合物中进行分子内电子转移(位点特异性外层电子转移机制)与HbO和MbO反应。铁氰化钾和Fe(3)与NTA、EDTA、CDTA、ATP、2,3 - DPG、柠檬酸盐和焦磷酸盐PP的配合物对HbO和MbO的氧化主要通过简单的外层电子转移机制,通过暴露的血红素边缘进行。根据马库斯理论,该反应的速率与试剂的氧化还原电位差异及其自交换速率相关。对于带电试剂,由于静电相互作用,反应可能先于它们与蛋白质的非特异性结合。LbO与羧酸盐铁配合物的反应,与其与铁氰化钾的反应不同,通过位点特异性外层电子转移机制发生,尽管相同的试剂通过简单的外层电子转移机制氧化结构相似的MbO和细胞色素b。特别具有生物学意义的是,在少量金属离子或配合物存在下(催化作用),HbO和MbO转化为高铁形式,直到最近,这仅在具有中等氧化还原电位的铜化合物中得到证明。反应速率的主要贡献来自铜与“内部”组氨酸His97(距血红素0.66 nm)的结合,His97与血红素丙酸酯COO基团形成氢键,以及远端的His64。这两个组氨酸对铜的亲和力远低于表面组氨酸残基,并且它们无法用化学试剂进行修饰。然而,最近发现,高电位的Fe(3)配合物铁氰化钾(400 mV),在蛋白质摩尔浓度的5%至20%时,可以是将MbO氧化为高铁Mb的有效催化剂。催化过程包括由于His119残基区域存在大的正局部静电势以及由Lys16、Ala19、Asp20和Arg118形成的足以容纳[Fe(CN)]的“口袋”,亚铁氰根阴离子在His119残基区域的结合。与溶液中缓慢的[Fe(CN)]氧化不同,结合的亚铁氰根通过氧气的快速质子辅助再氧化(这是催化循环完成所必需的),是由相邻质子化的His113和His116的最佳位置提供的,就像它发生在酶活性位点一样。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验