Suppr超能文献

Design and application of electron-transporting organic materials.

作者信息

Strukelj M, Papadimitrakopoulos F, Miller T M, Rothberg L J

出版信息

Science. 1995 Mar 31;267(5206):1969-72. doi: 10.1126/science.267.5206.1969.

Abstract

Operating lifetime is the main problem that complicates the use of polymeric light-emitting diodes (LEDs). A class of electron transport (ET) polymers [poly(aryl acrylate) and poly(aryl ether)s] is reported in which moieties with high electron affinities are covalently attached to stable polymer backbones. Devices based on poly(p-phenylenevinylene) (PPV) prepared with these materials exhibited a 30-fold improvement in stability and, in one case, dramatically lower (10 volts versus about 30 volts) operating voltage relative to those having conventional ET layers. The current-carrying capacity of indium tin oxide-PPV-polymeric ET layer-aluminum LEDs was also increased by a factor of 30. These improvements lead to an enhancement in power efficiency of nearly an order of magnitude. Choosing polymers with high glass transition temperatures increases device lifetime.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验