Hanel R, Conrath B, Flasar F M, Kunde V, Maguire W, Pearl J, Pirraglia J, Samuelson R, Herath L, Allison M, Cruikshank D, Gautier D, Gierasch P, Horn L, Koppany R, Ponnamperuma C
Science. 1981 Apr 10;212(4491):192-200. doi: 10.1126/science.212.4491.192.
During the passage of Voyager 1 through the Saturn system, the infrared instrument acquired spectral and radiometric data on Saturn, the rings, and Titan and other satellites. Infrared spectra of Saturn indicate the presence of H(2), CH(4), NH(3), PH(3), C(2)H(2), C(2)H(6), and possibly C(3)H(4) and C(3)H(8). A hydrogen mole fraction of 0.94 is inferred with an uncertainty of a few percent, implying a depletion of helium in the atmosphere of Saturn relative to that of Jupiter. The atmospheric thermal structure of Saturn shows hemisphere asymmetries that are consistent with a response to the seasonally varying insolation. Extensive small-scale latitudinal structure is also observed. On Titan, positive identifications of infrared spectral features are made for CH(4), C(2)H(2), C(2)H(4), C(2)H(6), and HCN; tentative identifications are made for C(3)H(4) and C(3)H(8). The infrared continuum opacity on Titan appears to be quite small between 500 and 600 cm(-1), implying that the solid surface is a major contributor to the observed emission over this spectral range; between 500 and 200 cm(-1) theopacity increases with decreasing wave number, attaining an optical thickness in excess of 2 at 200 cm(-1). Temperatures near the 1-millibar level are independent of longitude and local time but show a decrease of approximately 20 K between the equator and north pole, which suggests a seasonally dependent cyclostrophic zonal flow in the stratosphere of approximately 100 meters per second. Measurements of the C ring of Saturn yield a temperature of 85 +/- 1 K and an infrared optical depth of 0.09 +/- 0.01. Radiometer observations of sunlight transmitted through the ring system indicate an optical depth of 10(-1.3 +/-0.3) for the Cassini division. A phase integral of 1.02 +/- 0.06 is inferred for Rhea, which agrees with values for other icy bodies in the solar system. Rhea eclipse observations indicate the presence of surface materials with both high and low thermal inertias, the former most likely a blocky component and the latter a frost.
在“旅行者1号”穿越土星系统期间,红外仪器获取了有关土星、土星环、土卫六及其他卫星的光谱和辐射测量数据。土星的红外光谱显示存在H₂、CH₄、NH₃、PH₃、C₂H₂、C₂H₆,可能还有C₃H₄和C₃H₈。推断出氢的摩尔分数为0.94,不确定度为百分之几,这意味着土星大气中的氦相对于木星大气有所损耗。土星的大气热结构呈现出半球不对称性,这与对季节性变化日照的响应一致。还观测到广泛的小尺度纬向结构。在土卫六上,对CH₄、C₂H₂、C₂H₄、C₂H₆和HCN的红外光谱特征进行了明确识别;对C₃H₄和C₃H₈进行了初步识别。土卫六在500至600厘米⁻¹之间的红外连续体不透明度似乎相当小,这意味着固体表面是该光谱范围内观测到的辐射的主要贡献者;在500至200厘米⁻¹之间,不透明度随波数减小而增加,在200厘米⁻¹处光学厚度超过2。1毫巴高度附近的温度与经度和当地时间无关,但在赤道和北极之间显示出约20 K的下降,这表明平流层中存在与季节相关的约每秒100米的旋衡纬向气流。对土星C环的测量得出温度为85±1 K,红外光学深度为0.09±0.01。通过环系统透射的太阳光的辐射计观测表明,卡西尼环缝的光学深度为10⁻¹.³±⁰.³。推断土卫五的相位积分值为1.02±0.06,这与太阳系中其他冰体的值相符。土卫五的日食观测表明存在具有高和低热惯性的表面物质,前者最可能是块状成分,后者是霜。