Suppr超能文献

电子处方系统中过量处方的检测与预防

Detection and prevention of prescriptions with excessive doses in electronic prescribing systems.

作者信息

Seidling H M, Al Barmawi A, Kaltschmidt J, Bertsche T, Pruszydlo M G, Haefeli W E

机构信息

Department of Internal Medicine VI, Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.

出版信息

Eur J Clin Pharmacol. 2007 Dec;63(12):1185-92. doi: 10.1007/s00228-007-0370-9. Epub 2007 Sep 5.

Abstract

INTRODUCTION

Dose dependent adverse drug reactions are often caused by prescribing errors ignoring upper dose limits. Thus, computerised physician order entry incorporating maximum recommended therapeutic doses (MRTDs) might reduce prescriptions of excessive doses. We evaluated the suitability of MRTD information as published in the Summary of Product Characteristics (SPC) (MRTD(SPC)) or by the US Food and Drug Administration (MRTD(FDA)) and the value of Defined Daily Doses (DDD, World Health Organisation) as knowledge bases for an alerting system.

METHODS

In a large set of critical-dose drugs (N = 140) we compared MRTD(FDA) and DDD values with the corresponding German MRTD(SPC). We then retrospectively assessed a set of 633 electronically prescribed drugs (EPDs) issued at a university hospital and calculated prescription rates of excessive doses.

RESULTS

MRTD(FDA) was similar to MRTD(SPC) in 37% (N = 140), higher in 32%, and lower in 31% of drugs. On average, available DDD values (N = 129) were 1.6 times lower than MRTD(SPC), with 64% being lower, 33% similar, and 3% larger than MRTD(SPC). Prescription rates of excessive doses according to MRTD(FDA) were 2.5-fold higher (6.1%) than according to MRTD(SPC) (2.5%) (p < 0.01). However, only one in four EPDs categorised as overdosed according to MRTD(FDA) exceeded MRTD(SPC), and MRTD(FDA) values were available only for 67% of all assessed EPDs.

CONCLUSION

Our study revealed a remarkable number of prescriptions with doses exceeding approved limits. Their prevention appears feasible but the choice of an appropriate database for MRTDs is essential, and differences between available information sources are large.

摘要

引言

剂量依赖性药物不良反应通常是由忽视剂量上限的处方错误引起的。因此,纳入最大推荐治疗剂量(MRTDs)的计算机化医师医嘱录入系统可能会减少过量用药的处方。我们评估了产品特性摘要(SPC)中公布的MRTD信息(MRTD(SPC))或美国食品药品监督管理局公布的MRTD信息(MRTD(FDA))的适用性,以及限定日剂量(DDD,世界卫生组织)作为警报系统知识库的价值。

方法

在一大组关键剂量药物(N = 140)中,我们将MRTD(FDA)和DDD值与相应的德国MRTD(SPC)进行了比较。然后,我们回顾性评估了某大学医院开具的一组633份电子处方药物(EPDs),并计算了过量用药的处方率。

结果

在37%(N = 140)的药物中,MRTD(FDA)与MRTD(SPC)相似,在32%的药物中MRTD(FDA)更高,在31%的药物中MRTD(FDA)更低。平均而言,可用的DDD值(N = 129)比MRTD(SPC)低1.6倍,其中64%低于MRTD(SPC),33%与MRTD(SPC)相似,3%高于MRTD(SPC)。根据MRTD(FDA)的过量用药处方率(6.1%)比根据MRTD(SPC)的过量用药处方率(2.5%)高2.5倍(p < 0.01)。然而,根据MRTD(FDA)分类为用药过量的EPDs中,只有四分之一超过了MRTD(SPC),并且MRTD(FDA)值仅适用于所有评估的EPDs中的67%。

结论

我们的研究发现大量处方的剂量超过了批准的限度。预防这些情况似乎是可行的,但选择合适的MRTD数据库至关重要,并且现有信息来源之间的差异很大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验