Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
Int J Med Inform. 2010 Dec;79(12):832-9. doi: 10.1016/j.ijmedinf.2010.09.005. Epub 2010 Oct 15.
Efficient search for and finding drugs is essential for electronic drug information systems which, for their part, are prerequisites for computerized physician order entry systems and clinical decision support with the potential to prevent medication errors. Search failures would be critical: they may delay or even prohibit prescription processes or timely retrieval of vital drug information. We analyzed spelling-correction and error characteristics in drug searches and the suitability of auto-completion as prevention strategy.
A blank entry field was presented to the user for unbiased queries in a web-based drug information system containing >105,000 brand names and active ingredients accessible from all 5500 computers of the Heidelberg University Hospital. The system was equipped with an error-tolerant search. Misspelled but found drug names confirmed by users were aligned by dynamic programming algorithms, opposing misspelled and correct names letter by letter. We analyzed the ratios of correctly and incorrectly spelled but found drugs, frequencies of characters, and their position in misspelled search words.
Without error-tolerant search, no results were found in 17.5% of all queries. Users confirmed 31% of all results found with phonetic error-correction support. Sixteen percent of all spelling errors were letters in close proximity to the correct letter on keyboards. On average, 7% of the initial letters in misspelled words contained errors.
Drug information systems should be equipped with error-tolerant algorithms to reduce search failures. Drug initial letters are also error-prone, thus auto-completion is not a sufficient error-prevention strategy and needs additional support by error-tolerant algorithms.
高效的药物搜索和发现对于电子药物信息系统至关重要,而电子药物信息系统又是计算机化医嘱录入系统和临床决策支持系统的前提,有可能防止用药错误。搜索失败将是灾难性的:它们可能会延迟甚至禁止处方流程或及时检索重要的药物信息。我们分析了药物搜索中的拼写纠错和错误特征,以及自动补全作为预防策略的适用性。
在一个基于网络的药物信息系统中,向用户呈现一个空白的输入字段,用于进行无偏见的查询,该系统包含超过 105000 个品牌名称和活性成分,可从海德堡大学医院的 5500 台计算机中访问。该系统配备了容错搜索功能。用户确认的拼写错误但找到的药物名称通过动态规划算法对齐,逐字比较拼写错误和正确的名称。我们分析了正确和错误拼写但找到的药物的比例、字符的频率及其在拼写错误的搜索词中的位置。
如果没有容错搜索,所有查询中就有 17.5%没有结果。有语音纠错支持的用户确认了所有找到的结果的 31%。所有拼写错误中有 16%是键盘上与正确字母相邻的字母。平均而言,拼写错误的单词中初始字母的 7%包含错误。
药物信息系统应配备容错算法以减少搜索失败。药物的首字母也容易出错,因此自动补全不是一种充分的错误预防策略,需要容错算法的额外支持。