Klocke R A
Department of Medicine, State University of New York, Buffalo 14214.
J Appl Physiol (1985). 1991 Dec;71(6):2536-42. doi: 10.1152/jappl.1991.71.6.2536.
The kinetics of gas exchange are monitored in an isolated perfused lung preparation contained within a plethysmograph. The lungs are perfused with buffer, and there is no gas exchange until a 2.0-ml bolus of reactant is injected into the perfusion system. Subsequent gas exchange produces a pressure transient that is related to the corresponding volume of exchanged gas. The observed rate of volume change is the result of two separate processes: 1) the rate of gas exchange during transit through the capillary bed and 2) the distribution of vascular transit times between the point of injection and the capillary bed. The latter is assessed by a control injection containing a dissolved inert gas that is liberated in the alveoli as the bolus enters the capillary bed. Analysis of the experimental curves permits the separation of these two processes. A model of exchange kinetics indicates that this method has the capability of measuring kinetic events occurring during gas exchange in the microcirculation under physiological conditions.