Schonberger O, Hirst T R, Pines O
Department of Molecular Biology, Hebrew University, Hadassah Medical School, Jerusalem, Israel.
Mol Microbiol. 1991 Nov;5(11):2663-71. doi: 10.1111/j.1365-2958.1991.tb01975.x.
A hybrid protein consisting of the Escherichia coli lipoprotein signal sequence attached to the mature sequence of the B subunit of heat-labile enterotoxin (Lipo-EtxB) was expressed in yeast and E. coli. Analyses of cell lysates from Saccharomyces cerevisiae and E. coli expressing the protein revealed that both organisms were able to assemble Lipo-EtxB into oligomers that were (i) stable in the presence of sodium dodecyl sulphate, (ii) resistant to proteinase K degradation, and (iii) able to bind to GM1-ganglioside receptors. Each of these properties are characteristic of the wild-type B subunit pentamer produced in E. coli. Assembly of Lipo-EtxB was found to be unaffected in a sec18 mutant of S. cerevisiae, which possesses a temperature-sensitive defect in protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus, but was found not to assemble in a sec53 mutant, which causes the misfolding of proteins targeted to the ER. A kar2-1 mutation with a defect in the yeast homologue of BiP caused an 18-fold reduction in Lipo-EtxB assembly at the non-permissive temperature in S. cerevisiae. However, introduction of the wild-type KAR2 gene on a plasmid into the kar2-1 mutant completely suppressed the inhibition of Lipo-EtxB assembly. This provides the first evidence that KAR2 facilitates the assembly of an oligomeric protein in yeast and thus implicates KAR2 as a 'molecular chaperone'. The possible mechanisms of enterotoxoid assembly in E. coli and S. cerevisiae are discussed.