Holmes Elizabeth Eli, Sabo John L, Viscido Steven Vincent, Fagan William Fredric
Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112, USA.
Ecol Lett. 2007 Dec;10(12):1182-98. doi: 10.1111/j.1461-0248.2007.01105.x. Epub 2007 Sep 4.
Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.
预测种群数量下降到某个临界阈值(准灭绝风险)是种群生存力分析(PVA)的核心目标之一,此类预测在主要保护组织的决策中占据显著地位。在本文中,我们认为准确预测种群的准灭绝风险并不一定需要了解潜在的生物学机制。由于种群增长具有随机性和倍增性,种群轨迹的整体行为在各种随机种群过程中会收敛到常见的统计形式。本文为这一论点提供了理论依据。我们表明,各种复杂随机种群过程(包括年龄结构、密度依赖和空间结构种群)的准灭绝曲面可以通过一种简单的随机近似来建模:叠加高斯误差的随机指数增长过程。使用模拟数据和实际数据,我们表明该模型可以用20至30年的数据进行估计,并且能够提供相对无偏的准灭绝风险,其置信区间远小于(0,1)。即使对于源自一些噪声最大的种群过程(密度依赖反馈、物种相互作用和强烈的年龄结构循环)的模拟数据,情况也是如此。统计模型的一个关键优势在于,其参数以及这些参数的不确定性可以使用标准统计方法从时间序列数据中进行估计。相比之下,对于大多数受保护关注的物种,由于所有各种参数的数据有限,通常必须指定而非估计生物学现实模型。生物学现实模型在PVA中对于评估影响种群的单个部分、单个人口统计学速率或不同地理区域的特定管理选项将始终占有重要地位。然而,对于预测准灭绝风险,基于种群过程收敛统计特性的统计模型比生物学现实模型具有许多优势。