Ye Xiong, Ionascu Dan, Gruia Florin, Yu Anchi, Benabbas Abdelkrim, Champion Paul M
Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14682-7. doi: 10.1073/pnas.0702622104. Epub 2007 Sep 5.
We present temperature-dependent kinetic measurements of ultrafast diatomic ligand binding to the "bare" protoheme (L(1)-FePPIX-L(2), where L(1) = H(2)O or 2-methyl imidazole and L(2) = CO or NO). We found that the binding of CO is temperature-dependent and nonexponential over many decades in time, whereas the binding of NO is exponential and temperature-independent. The nonexponential nature of CO binding to protoheme, as well as its relaxation above the solvent glass transition, mimics the kinetics of CO binding to myoglobin (Mb) but on faster time scales. This demonstrates that the nonexponential kinetic response observed for Mb is not necessarily due to the presence of protein conformational substates but rather is an inherent property of the solvated heme. The nonexponential kinetic data were analyzed by using a linear coupling model with a distribution of enthalpic barriers that fluctuate on slower time scales than the heme-CO recombination time. Below the solvent glass transition (T(g) approximately 180 K), the average enthalpic rebinding barrier for H(2)O-PPIX-CO was found to be approximately 1 kJ/mol. Above T(g), the barrier relaxes and is approximately 6 kJ/mol at 290 K. Values for the first two moments of the heme doming coordinate distribution extracted from the kinetic data suggest significant anharmonicity above T(g). In contrast to Mb, the protoheme shows no indication of the presence of "distal" enthalpic barriers. Moreover, the wide range of Arrhenius prefactors (10(9) to 10(11) s(-1)) observed for CO binding to heme under differing conditions suggests that entropic barriers may be an important source of control in this class of biochemical reactions.
我们展示了超快双原子配体与“裸露”原血红素(L(1)-FePPIX-L(2),其中L(1) = H₂O或2-甲基咪唑,L(2) = CO或NO)结合的温度相关动力学测量结果。我们发现,CO的结合具有温度依赖性,并且在时间上跨越多个数量级是非指数性的,而NO的结合是指数性的且与温度无关。CO与原血红素结合的非指数性质,以及其在溶剂玻璃化转变温度以上的弛豫,在更快的时间尺度上模拟了CO与肌红蛋白(Mb)结合的动力学。这表明,在Mb中观察到的非指数动力学响应不一定是由于蛋白质构象亚态的存在,而是溶剂化血红素的固有特性。通过使用具有焓垒分布的线性耦合模型对非指数动力学数据进行了分析,该焓垒分布在比血红素-CO重组时间更慢的时间尺度上波动。在溶剂玻璃化转变温度(T(g)约为180 K)以下,发现H₂O-PPIX-CO平均焓再结合垒约为1 kJ/mol。在T(g)以上,该垒弛豫,在290 K时约为6 kJ/mol。从动力学数据中提取的血红素穹顶坐标分布的前两个矩的值表明在T(g)以上存在显著的非谐性。与Mb不同,原血红素没有显示出“远端”焓垒存在的迹象。此外,在不同条件下观察到的CO与血红素结合的阿累尼乌斯前因子范围很广(10⁹至10¹¹ s⁻¹),这表明熵垒可能是这类生化反应中控制的一个重要来源。