Suppr超能文献

预测放射性肺损伤的风险。

Predicting risk of radiation-induced lung injury.

作者信息

Madani Indira, De Ruyck Kim, Goeminne Hannelore, De Neve Wilfried, Thierens Hubert, Van Meerbeeck Jan

机构信息

Department of Radiotherapy, Ghent University Hospital, Ghent, Belgium.

出版信息

J Thorac Oncol. 2007 Sep;2(9):864-74. doi: 10.1097/JTO.0b013e318145b2c6.

Abstract

Radiation-induced lung injury (RILI) is the most common, dose-limiting complication of thoracic radio- and radiochemotherapy. Unfortunately, predicting which patients will suffer from this complication is extremely difficult. Ideally, individual phenotype- and genotype-based risk profiles should be able to identify patients who are resistant to RILI and who could benefit from dose escalation in chemoradiotherapy. This could result in better local control and overall survival. We review the risk predictors that are currently in clinical use--dosimetric parameters of radiotherapy such as normal tissue complication probability, mean lung dose, V20 and V30--as well as biomarkers that might individualize risk profiles. These biomarkers comprise a variety of proinflammatory and profibrotic cytokines and molecules including transforming growth factor beta1 that are implicated in development and persistence of RILI. Dosimetric parameters of radiotherapy show a low negative predictive value of 60% to 80%. Depending on the studied molecule, negative predictive value of biomarkers is approximately 50%. The predictive power of biomarkers might be increased if they are coupled with radiogenomics, e.g., genotyping analysis of single nucleotide polymorphisms in transforming growth factor beta1, transforming growth factor beta1 pathway genes, and other cytokines. Genetic variability and the complexity of RILI and its underlying molecular mechanisms make identification of biological risk predictors challenging. Further investigations are needed to develop more effective risk predictors of RILI.

摘要

放射性肺损伤(RILI)是胸部放疗和放化疗最常见的剂量限制性并发症。不幸的是,预测哪些患者会出现这种并发症极其困难。理想情况下,基于个体表型和基因型的风险概况应能够识别出对RILI有抗性以及可能从放化疗剂量增加中获益的患者。这可能会带来更好的局部控制和总生存期。我们回顾了目前临床使用的风险预测指标——放疗的剂量学参数,如正常组织并发症概率、平均肺剂量、V20和V30——以及可能使风险概况个体化的生物标志物。这些生物标志物包括多种促炎和促纤维化细胞因子及分子,包括与RILI的发生和持续相关的转化生长因子β1。放疗的剂量学参数显示出60%至80%的低阴性预测值。根据所研究的分子,生物标志物的阴性预测值约为50%。如果将生物标志物与放射基因组学相结合,例如对转化生长因子β1、转化生长因子β1信号通路基因和其他细胞因子中的单核苷酸多态性进行基因分型分析,其预测能力可能会提高。RILI的遗传变异性及其潜在分子机制的复杂性使得识别生物学风险预测指标具有挑战性。需要进一步研究以开发更有效的RILI风险预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验