Suppr超能文献

通过使用计算建模工具和分子动力学模拟来克服作为药物靶点的实验结构的不足或局限性。

Overcoming the inadequacies or limitations of experimental structures as drug targets by using computational modeling tools and molecular dynamics simulations.

作者信息

Marco Esther, Gago Federico

机构信息

Bioinformatics Unit, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

出版信息

ChemMedChem. 2007 Oct;2(10):1388-401. doi: 10.1002/cmdc.200700087.

Abstract

X-ray crystallography, NMR spectroscopy, and cryoelectron microscopy stand out as powerful tools that enable us to obtain atomic detail about biomolecules that can be potentially targeted by drugs. This knowledge is essential if virtual screening or structure-based ligand-design methods are going to be used in drug discovery. However, the macromolecule of interest is not always amenable to these types of experiment or, as is often the case, the conformation found experimentally cannot be used directly for docking studies because of significant changes between apo and bound forms. Furthermore, sometimes the desired insight into the binding mechanism cannot be gained because the structure of the ligand-receptor complex, not having been time-resolved, represents the endpoint of the binding process and therefore retains little or no information about the intermediate stages that led to its creation. Molecular dynamics (MD) simulations are routinely applied these days to the study of biomolecular systems with the aims of sampling configuration space more efficiently and getting a better understanding of the factors that determine structural stability and relevant biophysical and biochemical processes such as protein folding, ligand binding, and enzymatic reactions. This field has matured significantly in recent years, and strategies have been devised (for example activated, steered, or targeted MD) that allow the calculated trajectories to be biased in attempts to properly shape a ligand binding pocket or simulate large-scale motions involving one or more protein domains. On the other hand, low-frequency motions can be simulated quite inexpensively by calculation of normal modes which allow the investigation of alternative receptor conformations. Selected examples in which these methods have been applied to several medicinal chemistry and in silico pharmacology endeavors are presented.

摘要

X射线晶体学、核磁共振光谱学和冷冻电子显微镜是强大的工具,使我们能够获得有关可能成为药物靶点的生物分子的原子细节。如果要在药物发现中使用虚拟筛选或基于结构的配体设计方法,这些知识至关重要。然而,感兴趣的大分子并不总是适合进行这类实验,或者通常情况下,由于无配体形式和结合形式之间存在显著变化,实验发现的构象不能直接用于对接研究。此外,有时由于配体-受体复合物的结构没有经过时间分辨,代表了结合过程的终点,因此几乎没有保留或没有保留关于导致其形成的中间阶段的信息,所以无法获得对结合机制的期望见解。如今,分子动力学(MD)模拟经常应用于生物分子系统的研究,目的是更有效地采样构象空间,并更好地理解决定结构稳定性以及相关生物物理和生化过程(如蛋白质折叠、配体结合和酶促反应)的因素。近年来,该领域已经显著成熟,并且已经设计出了一些策略(例如激活、引导或靶向MD),这些策略允许在计算轨迹时进行偏差调整,以尝试正确塑造配体结合口袋或模拟涉及一个或多个蛋白质结构域的大规模运动。另一方面,可以通过计算正常模式以相当低的成本模拟低频运动,这允许研究受体的替代构象。本文展示了这些方法应用于多个药物化学和计算机药理学研究的选定示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验