Nakamura Hirofumi, Sunatsuki Yukinari, Kojima Masaaki, Matsumoto Naohide
Department of Chemistry, Faculty of Science, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530, Japan.
Inorg Chem. 2007 Oct 1;46(20):8170-81. doi: 10.1021/ic070286+. Epub 2007 Sep 7.
The effect of a counteranion on chiral recognition inducing conglomerate crystallization of a cobalt(III) complex is reported. An achiral tripodal ligand involving three imidazole groups, tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H3L), was prepared by condensation of tris(2-aminoethyl)amine and 4-formylimidazole in a 1:3 mole ratio. The reaction of H3L and trans-[CoIIICl2(py)4]+ afforded the chiral (Delta or Lambda) [CoIII(H3L)]3+ complex. The formally hemideprotonated complexes [CoIII(H(1.5)L)]X(1.5).nH2O (where X = Cl, Br, I, BF4, ClO4, or PF6) were synthesized by controlled deprotonation of the uncoordinated imidazole NH groups of [Co(H3L)]3+. In crystals of the hemideprotonated complex, two components, [Co(H3L)]3+ and [Co(L)], with the same absolute configuration are linked by imidazole-imidazolate hydrogen bonds to form an extended homochiral 2D sheet structure, which is composed of a hexanuclear unit with a trigonal void. There are two ways of stacking the sheets: One is via homochiral stacking, and the other is via heterochiral stacking. When the size of the counterion is small (i.e., X = Cl, Br, I, or BF4), adjacent homochiral sheets with the same chirality are stacked to form a homochiral crystal (conglomerate). With large anions (i.e., ClO4- and PF6-), a homochiral sheet consisting of Delta enantiomers and a sheet consisting of Lambda enantiomers are stacked alternately to give a heterochiral crystal (a racemic crystal). Optically active Lambda-Co(H(1.5)L)(1.5).H2O was synthesized from Lambda-[Co(H3L)]3+, and the crystal structure was compared to that of the racemic complex. There are two conflicting factors governing the crystal structure: the skeletal density; the size of the channels. The 2D sheets are more closely packed in the homochiral crystal than in the heterochiral crystal. However, the channels, where the counterions are accommodated, are smaller in the homochiral crystal, and the steric congestion between the anions increases with increasing anion size. The heterochiral crystal has a flexible, zigzag channel structure, and the size of the channels can increase to accommodate larger anions. Thus, complexes with large anions (i.e., ClO4- and PF6-) preferentially form heterochiral crystals rather than homochiral crystals.
报道了抗衡阴离子对手性识别诱导钴(III)配合物聚集体结晶的影响。通过三(2-氨基乙基)胺与4-甲酰基咪唑以1:3摩尔比缩合制备了一种包含三个咪唑基团的非手性三脚架配体,即三{[2-{(咪唑-4-基)亚甲基}氨基]乙基}胺(H3L)。H3L与反式-[CoIIICl2(py)4]+反应得到手性(Δ或Λ)[CoIII(H3L)]3+配合物。通过对[Co(H3L)]3+未配位咪唑NH基团进行可控去质子化,合成了形式上半去质子化的配合物[CoIII(H(1.5)L)]X(1.5).nH2O(其中X = Cl、Br、I、BF4、ClO4或PF6)。在半去质子化配合物的晶体中,具有相同绝对构型的两个组分[Co(H3L)]3+和[Co(L)]通过咪唑-咪唑酸盐氢键相连,形成扩展的同手性二维片层结构,该片层结构由具有三角形空隙的六核单元组成。片层有两种堆积方式:一种是通过同手性堆积,另一种是通过异手性堆积。当抗衡离子尺寸较小时(即X = Cl、Br、I或BF4),具有相同手性的相邻同手性片层堆积形成同手性晶体(聚集体)。对于大阴离子(即ClO4-和PF6-),由Δ对映体组成的同手性片层和由Λ对映体组成的片层交替堆积,得到异手性晶体(外消旋晶体)。由Λ-[Co(H3L)]3+合成了光学活性的Λ-Co(H(1.5)L)(1.5).H2O,并将其晶体结构与外消旋配合物的晶体结构进行了比较。有两个相互矛盾的因素决定晶体结构:骨架密度;通道尺寸。同手性晶体中的二维片层比异手性晶体中的堆积更紧密。然而,容纳抗衡离子的通道在同手性晶体中较小,并且随着阴离子尺寸的增加,阴离子之间的空间拥挤程度增加。异手性晶体具有灵活的锯齿形通道结构,通道尺寸可以增大以容纳更大的阴离子。因此,具有大阴离子(即ClO...和PF6-)的配合物优先形成异手性晶体而不是同手性晶体。