Becker-Ritt A B, Martinelli A H S, Mitidieri S, Feder V, Wassermann G E, Santi L, Vainstein M H, Oliveira J T A, Fiuza L M, Pasquali G, Carlini C R
Graduate Program in Molecular and Cellular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul-UFRGS, Brazil.
Toxicon. 2007 Dec 1;50(7):971-83. doi: 10.1016/j.toxicon.2007.07.008. Epub 2007 Jul 31.
Ureases (EC 3.5.1.5) are nickel-dependent metalloenzymes that catalyze the hydrolysis of urea to ammonia and carbon dioxide. Produced by plants, fungi and bacteria, but not by animals, ureases share significant homology and similar mechanisms of catalysis, although differing in quaternary structures. While fungal and plant ureases are homo-oligomeric proteins of 90 kDa subunits, bacterial ureases are multimers of two (e.g. Helicobacter pylori) or three subunit complexes. It has been proposed that in plants these enzymes are involved in nitrogen bioavailability and in protection against pathogens. Previous studies by our group have shown that plant ureases, but not a bacterial (Bacillus pasteurii) urease, display insecticidal activity. Herein we demonstrate that (Glycine max) embryo-specific soybean urease, jackbean (Canavalia ensiformis) major urease and a recombinant H. pylori urease impair growth of selected phytopathogenic fungi at sub-micromolar concentrations. This antifungal property of ureases is not affected by treatment of the proteins with an irreversible inhibitor of the ureolytic activity. Scanning electron microscopy of urease-treated fungi suggests plasmolysis and cell wall injuries. Altogether, our data indicate that ureases probably contribute to the plant arsenal of defense compounds against predators and phytopathogens and that the urease defense mechanism is independent of ammonia release from urea.
脲酶(EC 3.5.1.5)是一种依赖镍的金属酶,可催化尿素水解为氨和二氧化碳。脲酶由植物、真菌和细菌产生,但动物不产生,尽管它们的四级结构不同,但脲酶具有显著的同源性和相似的催化机制。真菌和植物脲酶是由90 kDa亚基组成的同聚体蛋白,而细菌脲酶是由两个(如幽门螺杆菌)或三个亚基复合物组成的多聚体。有人提出,在植物中,这些酶参与氮的生物可利用性以及对病原体的防御。我们小组之前的研究表明,植物脲酶具有杀虫活性,而细菌(巴氏芽孢杆菌)脲酶则没有。在此,我们证明大豆胚胎特异性脲酶、刀豆主要脲酶和重组幽门螺杆菌脲酶在亚微摩尔浓度下会损害某些植物致病真菌的生长。脲酶的这种抗真菌特性不受脲酶活性不可逆抑制剂处理蛋白质的影响。对经脲酶处理的真菌进行扫描电子显微镜观察表明存在质壁分离和细胞壁损伤。总之,我们的数据表明,脲酶可能有助于植物抵御捕食者和植物病原体的防御化合物库,并且脲酶的防御机制与尿素释放氨无关。