Suppr超能文献

通过小角X射线散射研究溶液中疏水蛋白的相互作用。

Interactions of hydrophobin proteins in solution studied by small-angle X-ray scattering.

作者信息

Kisko Kaisa, Szilvay Géza R, Vainio Ulla, Linder Markus B, Serimaa Ritva

机构信息

Department of Physical Sciences, University of Helsinki, FI-00014 HU, Finland.

出版信息

Biophys J. 2008 Jan 1;94(1):198-206. doi: 10.1529/biophysj.107.112359. Epub 2007 Sep 7.

Abstract

Hydrophobins are a group of very surface-active, fungal proteins known to self-assemble on various hydrophobic/hydrophilic interfaces. The self-assembled films coat fungal structures and mediate their attachment to surfaces. Hydrophobins are also soluble in water. Here, the association of hydrophobins HFBI and HFBII from Trichoderma reesei in aqueous solution was studied using small-angle x-ray scattering. Both HFBI and HFBII exist mainly as tetramers in solution in the concentration range 0.5-10 mg/ml. The assemblies of HFBII dissociate more easily than those of HFBI, which can tolerate changes of pH from 3 to 9 and temperatures in the range 5 degrees C-60 degrees C. The self-association of HFBI and HFBII is mainly driven by the hydrophobic effect, and addition of salts along the Hofmeister series promotes the formation of larger assemblies, whereas ethanol breaks the tetramers into monomers. The possibility that the oligomers in solution form the building blocks of the self-assembled film at the air/water interface is discussed.

摘要

疏水蛋白是一类具有很强表面活性的真菌蛋白,已知它们能在各种疏水/亲水界面上自组装。自组装膜覆盖真菌结构并介导其与表面的附着。疏水蛋白也可溶于水。在此,利用小角X射线散射研究了里氏木霉的疏水蛋白HFBI和HFBII在水溶液中的缔合情况。在0.5 - 10 mg/ml的浓度范围内,HFBI和HFBII在溶液中主要以四聚体形式存在。HFBII的聚集体比HFBI的更容易解离,HFBI能耐受pH值从3到9以及温度在5摄氏度至60摄氏度范围内的变化。HFBI和HFBII的自缔合主要由疏水效应驱动,沿着霍夫迈斯特序列添加盐会促进形成更大的聚集体,而乙醇会将四聚体分解成单体。本文还讨论了溶液中的寡聚体在空气/水界面形成自组装膜结构单元的可能性。

相似文献

1
Interactions of hydrophobin proteins in solution studied by small-angle X-ray scattering.
Biophys J. 2008 Jan 1;94(1):198-206. doi: 10.1529/biophysj.107.112359. Epub 2007 Sep 7.
5
Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins.
Proteins. 2014 Jun;82(6):990-1003. doi: 10.1002/prot.24473. Epub 2013 Dec 26.
7
8
The relation between solution association and surface activity of the hydrophobin HFBI from Trichoderma reesei.
FEBS Lett. 2007 Jun 12;581(14):2721-6. doi: 10.1016/j.febslet.2007.05.024. Epub 2007 May 21.
9
Structural hierarchy in molecular films of two class II hydrophobins.
Biochemistry. 2003 May 13;42(18):5253-8. doi: 10.1021/bi034031t.
10
Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins.
J Biol Chem. 2021 Jan-Jun;296:100728. doi: 10.1016/j.jbc.2021.100728. Epub 2021 Apr 30.

引用本文的文献

2
A novel strategy for production of liraglutide precursor peptide and development of a new long-acting incretin mimic.
PLoS One. 2022 May 2;17(5):e0266833. doi: 10.1371/journal.pone.0266833. eCollection 2022.
3
Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins.
J Biol Chem. 2021 Jan-Jun;296:100728. doi: 10.1016/j.jbc.2021.100728. Epub 2021 Apr 30.
4
Vibrio cholerae biofilm scaffolding protein RbmA shows an intrinsic, phosphate-dependent autoproteolysis activity.
IUBMB Life. 2021 Feb;73(2):418-431. doi: 10.1002/iub.2439. Epub 2020 Dec 28.
5
Observation of pH-Induced Protein Reorientation at the Water Surface.
J Phys Chem Lett. 2017 Apr 20;8(8):1772-1776. doi: 10.1021/acs.jpclett.7b00394. Epub 2017 Apr 6.
6
Induced Fit in Protein Multimerization: The HFBI Case.
PLoS Comput Biol. 2016 Nov 10;12(11):e1005202. doi: 10.1371/journal.pcbi.1005202. eCollection 2016 Nov.
7
Recent Advances in Fungal Hydrophobin Towards Using in Industry.
Protein J. 2015 Aug;34(4):243-55. doi: 10.1007/s10930-015-9621-2.
8
9
Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus.
Eur Phys J E Soft Matter. 2009 Oct;30(2):181-5. doi: 10.1140/epje/i2009-10481-y. Epub 2009 Sep 18.

本文引用的文献

1
New developments in the program package for small-angle scattering data analysis.
J Appl Crystallogr. 2012 Mar 15;45(Pt 2):342-350. doi: 10.1107/S0021889812007662. eCollection 2012 Apr 1.
3
Surface properties of class ii hydrophobins from Trichoderma reesei and influence on bubble stability.
Langmuir. 2007 Jul 17;23(15):7995-8002. doi: 10.1021/la700451g. Epub 2007 Jun 20.
4
Self-assembled hydrophobin protein films at the air-water interface: structural analysis and molecular engineering.
Biochemistry. 2007 Mar 6;46(9):2345-54. doi: 10.1021/bi602358h. Epub 2007 Feb 13.
6
Interactions between macromolecules and ions: The Hofmeister series.
Curr Opin Chem Biol. 2006 Dec;10(6):658-63. doi: 10.1016/j.cbpa.2006.09.020. Epub 2006 Oct 10.
7
The crystal and solution structures of glyceraldehyde-3-phosphate dehydrogenase reveal different quaternary structures.
J Biol Chem. 2006 Nov 3;281(44):33433-40. doi: 10.1074/jbc.M605267200. Epub 2006 Sep 7.
10
Structural basis for rodlet assembly in fungal hydrophobins.
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3621-6. doi: 10.1073/pnas.0505704103. Epub 2006 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验