Saxena S K, Shen G, Lazor P
Science. 1994 Apr 15;264(5157):405-7. doi: 10.1126/science.264.5157.405.
Experiments on melting and phase transformations on iron in a laser-heated, diamond-anvil cell to a pressure of 150 gigapascals (approximately 1.5 million atmospheres) show that iron melts at the central core pressure of 363.85 gigapascals at 6350 +/- 350 kelvin. The central core temperature corresponding to the upper temperature of iron melting is 6150 kelvin. The pressure dependence of iron melting temperature is such that a simple model can be used to explain the inner solid core and the outer liquid core. The inner core is nearly isothermal (6150 kelvin at the center to 6130 kelvin at the inner core-outer core boundary), is made of hexagonal closest-packed iron, and is about 1 percent solid (MgSiO(3) + MgO). By the inclusion of less than 2 percent of solid impurities with iron, the outer core densities along a thermal gradient (6130 kelvin at the base of the outer core and 4000 kelvin at the top) can be matched with the average seismic densities of the core.
在激光加热的金刚石对顶砧装置中,对铁进行熔化和相变实验,压力达到150吉帕斯卡(约150万个大气压),结果表明,铁在363.85吉帕斯卡的中心核心压力及6350±350开尔文的温度下熔化。与铁熔化上限温度对应的中心核心温度为6150开尔文。铁熔化温度与压力的关系使得可以用一个简单模型来解释内核固态和外核液态的情况。内核近乎等温(中心为6150开尔文,内核 - 外核边界处为6130开尔文),由六方密排铁构成,且约1%为固态(MgSiO₃ + MgO)。通过在铁中加入少于2%的固态杂质,外核沿热梯度(外核底部为6130开尔文,顶部为4000开尔文)的密度可以与地核的平均地震密度相匹配。