Shin Minyoung, Chetkovich Dane M
Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA.
J Biol Chem. 2007 Nov 9;282(45):33168-80. doi: 10.1074/jbc.M703736200. Epub 2007 Sep 11.
The hyperpolarization-activated cation current, I(h), plays an important role in regulating intrinsic neuronal excitability in the brain. In hippocampal pyramidal neurons, I(h) is mediated by h channels comprised primarily of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits, HCN1 and HCN2. Pyramidal neuron h channels within hippocampal area CA1 are remarkably enriched in distal apical dendrites, and this unique distribution pattern is critical for regulating dendritic excitability. We utilized biochemical and immunohistochemical approaches in organotypic slice cultures to explore factors that control h channel localization in dendrites. We found that distal dendritic enrichment of HCN1 is first detectable at postnatal day 13, reaching maximal enrichment by the 3rd postnatal week. Interestingly we found that an intact entorhinal cortex, which projects to distal dendrites of CA1 but not area CA3, is critical for the establishment and maintenance of distal dendritic enrichment of HCN1. Moreover blockade of excitatory neurotransmission using tetrodotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione, or 2-aminophosphonovalerate redistributed HCN1 evenly throughout the dendrite without significant changes in protein expression levels. Inhibition of calcium/calmodulin-dependent protein kinase II activity, but not p38 MAPK, also redistributed HCN1 in CA1 pyramidal neurons. We conclude that activation of ionotropic glutamate receptors by excitatory temporoammonic pathway projections from the entorhinal cortex establishes and maintains the distribution pattern of HCN1 in CA1 pyramidal neuron dendrites by activating calcium/calmodulin-dependent protein kinase II-mediated downstream signals.
超极化激活的阳离子电流I(h)在调节大脑神经元的内在兴奋性方面起着重要作用。在海马锥体神经元中,I(h)由主要由超极化激活的环核苷酸门控(HCN)通道亚基HCN1和HCN2组成的h通道介导。海马CA1区的锥体神经元h通道在远端顶端树突中显著富集,这种独特的分布模式对于调节树突兴奋性至关重要。我们利用器官型脑片培养中的生化和免疫组化方法来探索控制h通道在树突中定位的因素。我们发现,HCN1在树突远端的富集在出生后第13天首次可检测到,在出生后第3周达到最大富集。有趣的是,我们发现完整的内嗅皮层,它投射到CA1的远端树突而不是CA3区,对于HCN1在树突远端的富集的建立和维持至关重要。此外,使用河豚毒素、6-氰基-7-硝基喹喔啉-2,3-二酮或2-氨基膦酸戊酸阻断兴奋性神经传递会使HCN1在整个树突中均匀重新分布,而蛋白质表达水平没有显著变化。抑制钙/钙调蛋白依赖性蛋白激酶II的活性,但不是p38丝裂原活化蛋白激酶,也会使CA1锥体神经元中的HCN1重新分布。我们得出结论,来自内嗅皮层的兴奋性颞叶-氨能通路投射通过激活钙/钙调蛋白依赖性蛋白激酶II介导的下游信号,建立并维持了HCN1在CA1锥体神经元树突中的分布模式。