Williams Aaron D, Jung Sangwook, Poolos Nicholas P
Department of Physiology and Biophysics, University of Washington.
Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, USA.
J Physiol. 2015 Jul 1;593(13):2779-92. doi: 10.1113/JP270453. Epub 2015 May 22.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, particularly that of the HCN1 isoform, are enriched in the distal dendrites of hippocampal CA1 pyramidal neurons; these channels have physiological functions with respect to decreasing neuronal excitability. In the present study, we aimed to investigate phosphorylation as a mechanism controlling Ih amplitude and HCN1 surface expression in hippocampal principal neurons under normal physiological conditions. Tyrosine phosphorylation decreased Ih amplitude at maximal activation (maximal Ih ), without altering HCN1 surface expression, in two classes of hippocampal principal neurons. Inhibition of serine/threonine protein phosphatases 1 and 2A decreased maximal Ih and HCN1 surface expression in hippocampal principal neurons. Protein kinase C (PKC) activation irreversibly diminished Ih and HCN1 surface expression, whereas PKC inhibition augmented Ih and HCN1 surface expression. PKC activation increased HCN1 channel phosphorylation. These results demonstrate the novel finding of a phosphorylation mechanism, dependent on PKC activity, which bidirectionally modulates Ih amplitude and HCN1channel surface expression in hippocampal principal neurons under normal physiological conditions.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels attenuate excitability in hippocampal pyramidal neurons. Loss of HCN channel-mediated current (Ih ), particularly that mediated by the HCN1 isoform, occurs with the development of epilepsy. Previously, we showed that, following pilocarpine-induced status epilepticus, there are two independent changes in HCN function in dendrites: decreased Ih amplitude associated with a loss of HCN1 surface expression and a hyperpolarizing shift in voltage-dependence of activation (gating). The hyperpolarizing shift in gating was attributed to decreased phosphorylation as a result of a loss of p38 mitogen-activated protein kinase activity and increased calcineurin activity; however, the mechanisms controlling Ih amplitude and HCN1 surface expression under epileptic or normal physiological conditions are poorly understood. We aimed to investigate phosphorylation as a mechanism regulating Ih amplitude and HCN1 surface expression (i.e. as is the case for HCN gating) in hippocampal principal neurons under normal physiological conditions. We discovered that inhibition of either tyrosine phosphatases or the serine/threonine protein phosphatases 1 and 2A decreased Ih at maximal activation in hippocampal CA1 pyramidal dendrites and pyramidal-like principal neuron somata from naïve rats. Furthermore, we found that inhibition of PP1/PP2A decreased HCN1 surface expression, whereas tyrosine phosphatase inhibition did not. Protein kinase C (PKC) activation reduced Ih amplitude and HCN1 surface expression, whereas PKC inhibition produced the opposite effect. Inhibition of protein phosphatases 1 and 2A and activation of PKC increased the serine phosphorylation state of the HCN1 protein. The effect of PKC activation on Ih was irreversible. These results indicate that PKC bidirectionally modulates Ih amplitude and HCN1 surface expression in hippocampal principal neurons.
超极化激活的环核苷酸门控(HCN)通道,尤其是HCN1亚型通道,在海马CA1锥体神经元的远端树突中富集;这些通道在降低神经元兴奋性方面具有生理功能。在本研究中,我们旨在研究磷酸化作为在正常生理条件下控制海马主要神经元中Ih幅度和HCN1表面表达的一种机制。在两类海马主要神经元中,酪氨酸磷酸化降低了最大激活时的Ih幅度(最大Ih),而不改变HCN1表面表达。抑制丝氨酸/苏氨酸蛋白磷酸酶1和2A可降低海马主要神经元中的最大Ih和HCN1表面表达。蛋白激酶C(PKC)激活不可逆地降低Ih和HCN1表面表达,而PKC抑制则增加Ih和HCN1表面表达。PKC激活增加HCN1通道磷酸化。这些结果证明了一个新发现,即一种依赖PKC活性的磷酸化机制,在正常生理条件下双向调节海马主要神经元中的Ih幅度和HCN1通道表面表达。
超极化激活的环核苷酸门控(HCN)离子通道减弱海马锥体神经元的兴奋性。癫痫发展过程中会出现HCN通道介导的电流(Ih)丧失,尤其是由HCN1亚型介导的电流。此前,我们发现,毛果芸香碱诱导的癫痫持续状态后,树突中HCN功能有两个独立变化:Ih幅度降低与HCN1表面表达丧失以及激活电压依赖性(门控)的超极化偏移有关。门控的超极化偏移归因于p38丝裂原活化蛋白激酶活性丧失和钙调神经磷酸酶活性增加导致的磷酸化降低;然而,在癫痫或正常生理条件下控制Ih幅度和HCN1表面表达的机制尚不清楚。我们旨在研究磷酸化作为在正常生理条件下调节海马主要神经元中Ih幅度和HCN1表面表达(即与HCN门控情况相同)的一种机制。我们发现,抑制酪氨酸磷酸酶或丝氨酸/苏氨酸蛋白磷酸酶1和2A可降低未处理大鼠海马CA1锥体树突和锥体样主要神经元胞体中最大激活时的Ih。此外,我们发现抑制PP1/PP2A可降低HCNl表面表达,而抑制酪氨酸磷酸酶则无此作用。蛋白激酶C(PKC)激活降低Ih幅度和HCN1表面表达,而PKC抑制则产生相反效果。抑制蛋白磷酸酶1和2A以及激活PKC可增加HCN1蛋白的丝氨酸磷酸化状态。PKC激活对Ih的影响是不可逆的。这些结果表明PKC双向调节海马主要神经元中的Ih幅度和HCN1表面表达。