Kaylani A, Georgiopoulos M, Mollaghasemi M, Anagnostopoulos G C, Sentelle C
Schoolof Electrical Engineering and Computer Science, University of Central Florida,Orlando, FL 32826, USA.
IEEE Trans Neural Netw. 2010 Apr;21(4):529-50. doi: 10.1109/TNN.2009.2037813. Epub 2010 Feb 17.
In this paper, we present the evolution of adaptive resonance theory (ART) neural network architectures (classifiers) using a multiobjective optimization approach. In particular, we propose the use of a multiobjective evolutionary approach to simultaneously evolve the weights and the topology of three well-known ART architectures; fuzzy ARTMAP (FAM), ellipsoidal ARTMAP (EAM), and Gaussian ARTMAP (GAM). We refer to the resulting architectures as MO-GFAM, MO-GEAM, and MO-GGAM, and collectively as MO-GART. The major advantage of MO-GART is that it produces a number of solutions for the classification problem at hand that have different levels of merit [accuracy on unseen data (generalization) and size (number of categories created)]. MO-GART is shown to be more elegant (does not require user intervention to define the network parameters), more effective (of better accuracy and smaller size), and more efficient (faster to produce the solution networks) than other ART neural network architectures that have appeared in the literature. Furthermore, MO-GART is shown to be competitive with other popular classifiers, such as classification and regression tree (CART) and support vector machines (SVMs).
在本文中,我们使用多目标优化方法展示了自适应共振理论(ART)神经网络架构(分类器)的演变。具体而言,我们提出使用多目标进化方法来同时进化三种著名ART架构的权重和拓扑结构;模糊ARTMAP(FAM)、椭球ARTMAP(EAM)和高斯ARTMAP(GAM)。我们将由此产生的架构称为MO - GFAM、MO - GEAM和MO - GGAM,并统称为MO - GART。MO - GART的主要优点是它为手头的分类问题产生了许多具有不同优点水平的解决方案[对未见数据的准确性(泛化)和大小(创建的类别数量)]。与文献中出现的其他ART神经网络架构相比,MO - GART被证明更优雅(不需要用户干预来定义网络参数)、更有效(具有更高的准确性和更小的大小)且更高效(更快地生成解决方案网络)。此外,MO - GART被证明与其他流行的分类器具有竞争力,如分类与回归树(CART)和支持向量机(SVM)。