Suppr超能文献

类别大小对异常模式分类的调节影响。

The modulating influence of category size on the classification of exception patterns.

作者信息

Homa Donald, Proulx Michael J, Blair Mark

机构信息

Department of Psychology, Arizona State University, Tempe, AZ 85287, USA.

出版信息

Q J Exp Psychol (Hove). 2008 Mar;61(3):425-43. doi: 10.1080/17470210701238883.

Abstract

Generalization gradients to exception patterns and the category prototype were investigated in two experiments. In Experiment 1, participants first learned categories of large size that contained a single exception pattern, followed by a transfer test containing new instances that had a manipulated similarity relationship to the exception or a nonexception training pattern as well as distortions of the prototype. The results demonstrated transfer gradients tracked the prototype category rather than the feedback category of the exception category. In Experiment 2, transfer performance was investigated for categories varying in size (5, 10, 20), partially crossed with the number of exception patterns (1, 2, 4). Here, the generalization gradients tracked the feedback category of the training instance when category size was small but tracked the prototype category when category size was large. The benefits of increased category size still emerged, even with proportionality of exception patterns held constant. These, and other outcomes, were consistent with a mixed model of classification, in which exemplar influences were dominant with small-sized categories and/or high error rates, and prototype influences were dominant with larger sized categories.

摘要

在两个实验中研究了对例外模式和类别原型的泛化梯度。在实验1中,参与者首先学习包含单个例外模式的大尺寸类别,随后进行迁移测试,其中包含与例外或非例外训练模式具有操纵相似关系的新实例以及原型的变形。结果表明,迁移梯度追踪的是原型类别而非例外类别的反馈类别。在实验2中,研究了不同大小(5、10、20)的类别(部分与例外模式数量(1、2、4)交叉)的迁移表现。在此,当类别较小时,泛化梯度追踪训练实例的反馈类别,但当类别较大时,泛化梯度追踪原型类别。即使例外模式的比例保持不变,类别大小增加的益处仍然会出现。这些以及其他结果与一种混合分类模型一致,在该模型中,范例影响在小尺寸类别和/或高错误率时占主导,而原型影响在大尺寸类别时占主导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验