Suppr超能文献

原型-畸变类别学习:跨分布式网络的两阶段学习过程。

Prototype-distortion category learning: a two-phase learning process across a distributed network.

作者信息

Little Deborah M, Thulborn Keith R

机构信息

Center for Stroke Research, Department of Neurology and Rehabilitation, University of Illinois at Chicago, 60612, USA.

出版信息

Brain Cogn. 2006 Apr;60(3):233-43. doi: 10.1016/j.bandc.2005.06.004. Epub 2006 Jan 9.

Abstract

This paper reviews a body of work conducted in our laboratory that applies functional magnetic resonance imaging (fMRI) to better understand the biological response and change that occurs during prototype-distortion learning. We review results from two experiments (Little, Klein, Shobat, McClure, & Thulborn, 2004; Little & Thulborn, 2005) that provide support for increasing neuronal efficiency by way of a two-stage model that includes an initial period of recruitment of tissue across a distributed network that is followed by a period of increasing specialization with decreasing volume across the same network. Across the two studies, participants learned to classify patterns of random-dot distortions (Posner & Keele, 1968) into categories. At four points across this learning process subjects underwent examination by fMRI using a category-matching task. A large-scale network, altered across the protocol, was identified to include the frontal eye fields, both inferior and superior parietal lobules, and visual cortex. As behavioral performance increased, the volume of activation within these regions first increased and later in the protocol decreased. Based on our review of this work we propose that: (i) category learning is reflected as specialization of the same network initially implicated to complete the novel task, and (ii) this network encompasses regions not previously reported to be affected by prototype-distortion learning.

摘要

本文回顾了我们实验室开展的一系列研究工作,这些研究运用功能磁共振成像(fMRI)来更好地理解在原型扭曲学习过程中发生的生物反应和变化。我们回顾了两个实验的结果(利特尔、克莱因、肖巴特、麦克卢尔和图尔伯恩,2004年;利特尔和图尔伯恩,2005年),这些结果支持了通过一个两阶段模型提高神经元效率的观点,该模型包括在一个分布式网络中最初招募组织的时期,随后是同一网络中体积减小但专业化程度增加的时期。在这两项研究中,参与者学习将随机点扭曲模式(波斯纳和基尔,1968年)分类。在这个学习过程中的四个时间点,受试者通过fMRI使用类别匹配任务进行检查。一个在实验过程中发生改变的大规模网络被确定包括额眼区、顶叶上下小叶和视觉皮层。随着行为表现提高,这些区域内的激活体积首先增加,随后在实验过程中减小。基于我们对这项工作的回顾,我们提出:(i)类别学习表现为最初涉及完成新任务的同一网络的专业化,并且(ii)这个网络包括以前未报道受原型扭曲学习影响的区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验