Suppr超能文献

Nonhypercalcemic 1,25-(OH)2D3 analogs potently induce the human osteocalcin gene promoter stably transfected into rat osteosarcoma cells (ROSCO-2).

作者信息

Morrison N A, Eisman J A

机构信息

Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales, Australia.

出版信息

J Bone Miner Res. 1991 Aug;6(8):893-9. doi: 10.1002/jbmr.5650060815.

Abstract

1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] is the active hormonal form of vitamin D3 and has potent effects on bone and calcium regulation. Over the past decade it has become apparent that 1,25-(OH)2D3 has other effects on cellular proliferation that potentially could be developed for therapy in human malignancy. Since the hypercalcemic effects of 1,25-(OH)2D3 have limited that use in the human, novel nonhypercalcemic analogs of 1,25-(OH)2D3 have been synthesized. The molecular mechanism of this divergence in these antiproliferative and calcium-regulating actions is unexplained. We have previously examined the human bone-specific gene osteocalcin as a model of the molecular mechanisms of vitamin D action in bone and have shown that induction of the osteocalcin gene by 1,25-(OH)2D3 is mediated through an unique and complex palindromic region of the promoter similar to but distinct from those of other steroid hormone-responsive elements. Using an osteosarcoma cell line permanently transfected with the vitamin D-responsive promoter of the human osteocalcin gene linked to a "reporter" gene, we have shown that there is a dose-dependent induction of CAT activity by 1,25-(OH)2D3 and that the potencies of vitamin D metabolites and analogs are comparable to those found in other vitamin D bioassays. Furthermore, vitamin D analogs, including MC-903, 22-oxa-1,25-(OH)2D3, and delta 22-1,25S,26-trihydroxyvitamin D3, which effect cellular differentiation but lack hypercalcemic activity in vivo, exhibit osteocalcin promoter inductive actions virtually identical to those of 1,25-(OH)2D3. Consideration of these and other data support the hypothesis that the divergent effects of such analogs on differentiation and calcium homeostasis reflect pharmacokinetic differences in vivo rather than distinct 1,25-(OH)2D3-sensitive pathways.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验