Suppr超能文献

基于配体的新型自我组织映射检测虚拟筛选

Ligand-based virtual screening by novelty detection with self-organizing maps.

作者信息

Hristozov Dimitar, Oprea Tudor I, Gasteiger Johann

机构信息

Computer-Chemie-Centrum, Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, Erlangen, Germany.

出版信息

J Chem Inf Model. 2007 Nov-Dec;47(6):2044-62. doi: 10.1021/ci700040r. Epub 2007 Sep 14.

Abstract

We describe a novel method for ligand-based virtual screening, based on utilizing Self-Organizing Maps (SOM) as a novelty detection device. Novelty detection (or one-class classification) refers to the attempt of identifying patterns that do not belong to the space covered by a given data set. In ligand-based virtual screening, chemical structures perceived as novel lie outside the known activity space and can therefore be discarded from further investigation. In this context, the concept of "novel structure" refers to a compound, which is unlikely to share the activity of the query structures. Compounds not perceived as "novel" are suspected to share the activity of the query structures. Nowadays, various databases contain active structures but access to compounds which have been found to be inactive in a biological assay is limited. This work addresses this problem via novelty detection, which does not require proven inactive compounds. The structures are described by spatial autocorrelation functions weighted by atomic physicochemical properties. Different methods for selecting a subset of targets from a larger set are discussed. A comparison with similarity search based on Daylight fingerprints followed by data fusion is presented. The two methods complement each other to a large extent. In a retrospective screening of the WOMBAT database novelty detection with SOM gave enrichment factors between 105 and 462-an improvement over the similarity search based on Daylight fingerprints between 25% and 100%, when the 100 top ranked structures were considered. Novelty detection with SOM is applicable (1) to improve the retrieval of potentially active compounds also in concert with other virtual screening methods; (2) as a library design tool for discarding a large number of compounds, which are unlikely to possess a given biological activity; and (3) for selecting a small number of potentially active compounds from a large data set.

摘要

我们描述了一种基于配体的虚拟筛选新方法,该方法利用自组织映射(SOM)作为新颖性检测工具。新颖性检测(或单类分类)是指识别不属于给定数据集所覆盖空间的模式的尝试。在基于配体的虚拟筛选中,被视为新颖的化学结构位于已知活性空间之外,因此可以从进一步研究中剔除。在此背景下,“新颖结构”的概念是指一种不太可能与查询结构具有相同活性的化合物。未被视为“新颖”的化合物被怀疑与查询结构具有相同活性。如今,各种数据库包含活性结构,但获取在生物测定中已被发现无活性的化合物的途径有限。这项工作通过新颖性检测解决了这个问题,新颖性检测不需要已证实无活性的化合物。结构由原子物理化学性质加权的空间自相关函数描述。讨论了从较大集合中选择目标子集的不同方法。给出了与基于Daylight指纹的相似性搜索及随后的数据融合的比较。这两种方法在很大程度上相互补充。在对WOMBAT数据库进行回顾性筛选时,使用SOM进行新颖性检测得到的富集因子在105至462之间,当考虑排名前100的结构时,比基于Daylight指纹的相似性搜索提高了25%至100%。使用SOM进行新颖性检测适用于:(1)与其他虚拟筛选方法协同使用时,提高潜在活性化合物的检索效率;(2)作为一种库设计工具,用于剔除大量不太可能具有给定生物活性的化合物;(3)从大数据集中选择少量潜在活性化合物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验