Suppr超能文献

对存在缺失数据的二元结局进行分析:缺失值 = 吸烟情况,采用末次观察值结转法,并进行少量多重填补。

Analysis of binary outcomes with missing data: missing = smoking, last observation carried forward, and a little multiple imputation.

作者信息

Hedeker Donald, Mermelstein Robin J, Demirtas Hakan

机构信息

University of Illinois at Chicago, Chicago, IL 60612-4336, USA.

出版信息

Addiction. 2007 Oct;102(10):1564-73. doi: 10.1111/j.1360-0443.2007.01946.x.

Abstract

AIMS

Analysis of binary outcomes with missing data is a challenging problem in substance abuse studies. We consider this problem in a simple two-group design where interest centers on comparing the groups in terms of the binary outcome at a single timepoint.

DESIGN

We describe how the deterministic assumptions of missing = smoking and last observation carried forward (LOCF) can be relaxed by allowing missingness to be related imperfectly to the binary outcome, either stratified on past values of the outcome or not. We also describe use of multiple imputation to take into account the uncertainty inherent in the imputed data.

SETTING

Data were analyzed from a published smoking cessation study evaluating the effectiveness of adding group-based treatment adjuncts to an intervention comprised of a television program and self-help materials.

PARTICIPANTS

Participants were 489 smokers who registered for the television-based program and who indicated an interest in attending group-based meetings.

MEASUREMENTS

The measurement of the smoking outcome was conducted via telephone interviews at post-intervention and at 24 months.

FINDINGS AND CONCLUSIONS

The significance of the group effect did vary as a function of the assumed relationship between missingness and smoking. The 'conservative' missing = smoking assumption suggested a beneficial group effect on smoking cessation, which was confirmed via a sensitivity analysis only if an extreme odds ratio of 5 between missingness and smoking was assumed. This type of sensitivity analysis is crucial in determining the role that missing data play in arriving at a study's conclusions.

摘要

目的

在药物滥用研究中,对存在缺失数据的二元结局进行分析是一个具有挑战性的问题。我们在一个简单的两组设计中考虑这个问题,研究的关注点是在单个时间点比较两组在二元结局方面的差异。

设计

我们描述了如何通过允许缺失情况与二元结局不完全相关(无论是否根据结局的过去值进行分层)来放宽“缺失 = 吸烟”和末次观察值结转(LOCF)的确定性假设。我们还描述了如何使用多重填补来考虑填补数据中固有的不确定性。

背景

数据来自一项已发表的戒烟研究,该研究评估了在由电视节目和自助材料组成的干预措施中增加基于小组的治疗辅助手段的效果。

参与者

参与者为489名登记参加基于电视节目的项目且表示有兴趣参加小组会议的吸烟者。

测量

吸烟结局的测量通过干预后和24个月时的电话访谈进行。

研究结果与结论

组效应的显著性确实因缺失情况与吸烟之间假定的关系而有所不同。“保守的”“缺失 = 吸烟”假设表明小组对戒烟有有益的影响,只有在假定缺失情况与吸烟之间的极端优势比为5时,通过敏感性分析才能证实这一点。这种类型的敏感性分析对于确定缺失数据在得出研究结论中所起的作用至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验