Packhaeuser C B, Kissel T
Department of Pharmaceutics and Biopharmacy, Philipps-Universität, D-35037 Marburg, Ketzerbach 63, 35032 Marburg, Germany.
J Control Release. 2007 Nov 6;123(2):131-40. doi: 10.1016/j.jconrel.2007.08.004. Epub 2007 Aug 16.
The feasibility to generate in situ forming parenteral depot systems from insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles, was investigated. Biodegradable nanoparticles formed polymeric semi-solid depots upon injection into isotonic phosphate buffered saline (PBS) with no additional initiators. Nanoparticles (NP) prepared from the different amine-modified polyesters displayed a pronounced positive zeta-potential of >25 mV. Diethylaminopropyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) (DEAPA(68)-PVAL-g-PLGA(1:20)), diethylaminoethyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) (DEAEA(33)-PVAL-g-PLGA(1:20)), and dimethylaminopropyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) (DMAPA(33)-PVAL-g-PLGA(1:20)), formed in situ depots by an ion-mediated aggregation with subsequent fusion of nanoparticles, related to a decreased glass transition temperature in the presence of PBS. Moreover, two factors, namely, polymer and insulin-nanocomplex concentration, were evaluated using a response surface design with respect to nanoparticles formation and insulin loading. Nanoparticles and implants were investigated by atomic force microscopy (AFM). The in vitro release from implants loaded with 2% insulin was carried out in a flow trough cell and quantified by high performance liquid chromatography (HPLC). The release showed a triphasic profile with an initial burst, pore diffusion and diffusion from the swollen matrix over more than two weeks. Insulin distribution in the implants during the release was followed by confocal laser scanning microscopy (CLSM). These findings combined with the protection of the model peptide against competitive macromolecules and the possibility to get dry powders by lyophilization make these nanoparticles-based depots suitable candidates for the design of controlled release devices for bioactive macromolecules.
研究了由负载胰岛素的二烷基氨基烷基 - 胺 - 聚乙烯醇 - g - 聚(丙交酯 - 共 - 乙交酯)纳米颗粒制备原位形成的肠胃外长效注射系统的可行性。可生物降解的纳米颗粒在注射到等渗磷酸盐缓冲盐水(PBS)中时,无需额外的引发剂即可形成聚合物半固体长效注射剂。由不同胺改性聚酯制备的纳米颗粒(NP)显示出大于25 mV的明显正ζ电位。二乙氨基丙基 - 胺 - 聚乙烯醇 - g - 聚(丙交酯 - 共 - 乙交酯)(DEAPA(68)-PVAL-g-PLGA(1:20))、二乙氨基乙基 - 胺 - 聚乙烯醇 - g - 聚(丙交酯 - 共 - 乙交酯)(DEAEA(33)-PVAL-g-PLGA(1:20))和二甲基氨基丙基 - 胺 - 聚乙烯醇 - g - 聚(丙交酯 - 共 - 乙交酯)(DMAPA(33)-PVAL-g-PLGA(1:20))通过离子介导的聚集以及随后纳米颗粒的融合形成原位长效注射剂,这与在PBS存在下玻璃化转变温度降低有关。此外,使用响应面设计评估了聚合物和胰岛素 - 纳米复合物浓度这两个因素对纳米颗粒形成和胰岛素负载的影响。通过原子力显微镜(AFM)对纳米颗粒和植入物进行了研究。在流动槽池中对负载2%胰岛素的植入物进行体外释放,并通过高效液相色谱(HPLC)进行定量。释放呈现出三相特征,包括初始突释、孔隙扩散以及在两周多时间内从溶胀基质中的扩散。在释放过程中,通过共聚焦激光扫描显微镜(CLSM)跟踪胰岛素在植入物中的分布。这些发现与模型肽对竞争性大分子的保护作用以及通过冻干获得干粉的可能性相结合,使得这些基于纳米颗粒的长效注射剂成为设计生物活性大分子控释装置的合适候选者。