疏水离子对:将小分子、肽和蛋白质封装到纳米载体中。
Hydrophobic ion pairing: encapsulating small molecules, peptides, and proteins into nanocarriers.
作者信息
Ristroph Kurt D, Prud'homme Robert K
机构信息
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
出版信息
Nanoscale Adv. 2019 Oct 1;1(11):4207-4237. doi: 10.1039/c9na00308h.
Hydrophobic ion pairing has emerged as a method to modulate the solubility of charged hydrophilic molecules ranging in class from small molecules to large enzymes. Charged hydrophilic molecules are ionically paired with oppositely-charged molecules that include hydrophobic moieties; the resulting uncharged complex is water-insoluble and will precipitate in aqueous media. Here we review one of the most prominent applications of hydrophobic ion pairing: efficient encapsulation of charged hydrophilic molecules into nano-scale delivery vehicles - nanoparticles or nanocarriers. Hydrophobic complexes are formed and then encapsulated using techniques developed for poorly-water-soluble therapeutics. With this approach, researchers have reported encapsulation efficiencies up to 100% and drug loadings up to 30%. This review covers the fundamentals of hydrophobic ion pairing, including nomenclature, drug eligibility for the technique, commonly-used counterions, and drug release of encapsulated ion paired complexes. We then focus on nanoformulation techniques used in concert with hydrophobic ion pairing and note strengths and weaknesses specific to each. The penultimate section bridges hydrophobic ion pairing with the related fields of polyelectrolyte coacervation and polyelectrolyte-surfactant complexation. We then discuss the state of the art and anticipated future challenges. The review ends with comprehensive tables of reported hydrophobic ion pairing and encapsulation from the literature.
疏水离子对已成为一种调节带电亲水分子溶解度的方法,这些分子的类别从小分子到大型酶不等。带电亲水分子与包含疏水部分的带相反电荷的分子形成离子对;由此产生的不带电复合物不溶于水,并会在水性介质中沉淀。在此,我们综述疏水离子对最突出的应用之一:将带电亲水分子高效封装到纳米级递送载体——纳米颗粒或纳米载体中。形成疏水复合物,然后使用针对难溶性治疗药物开发的技术进行封装。通过这种方法,研究人员报告的封装效率高达100%,载药量高达30%。本综述涵盖疏水离子对的基本原理,包括术语、该技术适用的药物、常用的抗衡离子以及封装的离子对复合物的药物释放。然后,我们重点介绍与疏水离子对协同使用的纳米制剂技术,并指出每种技术的优缺点。倒数第二部分将疏水离子对与聚电解质凝聚和聚电解质 - 表面活性剂络合的相关领域联系起来。然后,我们讨论当前的技术水平和预期的未来挑战。综述最后列出了文献中报道的疏水离子对和封装的综合表格。