Suppr超能文献

基于马尔可夫随机场的电子断层扫描自动图像配准

Markov random field based automatic image alignment for electron tomography.

作者信息

Amat Fernando, Moussavi Farshid, Comolli Luis R, Elidan Gal, Downing Kenneth H, Horowitz Mark

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

出版信息

J Struct Biol. 2008 Mar;161(3):260-75. doi: 10.1016/j.jsb.2007.07.007. Epub 2007 Jul 28.

Abstract

We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic alignment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image contrast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm, called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several plastic section and X-ray datasets.

摘要

我们提出了一种用于断层倾斜序列图像自动全精度对齐的方法。由于电子剂量有限和图像对比度低,冷冻电子显微镜图像的全精度自动对齐至今仍是一项艰巨的挑战。这些因素导致图像中的信噪比(SNR)较差,这使得自动特征跟踪器即使以高对比度的金颗粒作为基准特征也会产生误差。为了实现全精度重建的全自动对齐,我们将问题概率性地构建为在给定一组噪声图像的情况下找到最可能的粒子轨迹,利用上下文信息使解决方案对每个图像中的噪声更具鲁棒性。为了解决这个最大似然问题,我们使用马尔可夫随机场(MRF)来建立对齐中特征的对应关系,并对投影模型估计进行鲁棒优化。由此产生的算法,称为用于断层重建的鲁棒对齐和投影估计(RAPTOR),对于我们尝试的困难数据集不需要任何人工干预,并且提供了与专家用户的手动方法一样好的亚像素对齐。我们能够自动映射完整和部分标记轨迹,从而获得高度准确的图像对齐。我们的方法已应用于来自完整细菌细胞的具有低信噪比的具有挑战性的冷冻电子断层扫描数据集,以及几个塑料切片和X射线数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验