Mott Rosalind E, Helmke Brian P
Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA.
Am J Physiol Cell Physiol. 2007 Nov;293(5):C1616-26. doi: 10.1152/ajpcell.00457.2006. Epub 2007 Sep 13.
Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix (ECM) assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and ECM on a time scale of minutes. Using multiwavelength four-dimensional fluorescence microscopy, we measured the displacement of rhodamine-fibronectin and green fluorescent protein-labeled actin, vimentin, paxillin, and/or vinculin in aortic endothelial cells before and after onset of steady unidirectional shear stress. In the cytoskeleton, the onset of shear stress increased actin polymerization into lamellipodia, altered the angle of lateral displacement of actin stress fibers and vimentin filaments, and decreased centripetal remodeling of actin stress fibers in subconfluent and confluent cell layers. Shear stress induced the formation of new focal complexes and reduced the centripetal remodeling of focal adhesions in regions of new actin polymerization. The structural dynamics of focal adhesions and the fibronectin matrix varied with cell density. In subconfluent cell layers, shear stress onset decreased the displacement of focal adhesions and fibronectin fibrils. In confluent monolayers, the direction of fibronectin and focal adhesion displacement shifted significantly toward the downstream direction within 1 min after onset of shear stress. These spatially coordinated rapid changes in the structural dynamics of cytoskeleton, focal adhesions, and ECM are consistent with focusing of mechanical stress and/or strain near major sites of shear stress-mediated mechanotransduction.
血流动力学剪切应力调节内皮细胞的生化过程,这些过程控制细胞骨架收缩性、粘着斑动力学和细胞外基质(ECM)组装。由于剪切应力会导致应变迅速集中在细胞骨架的离散位置,我们推测剪切应力会在数分钟的时间尺度上协同改变细胞骨架、粘着斑位点和细胞外基质的结构动力学。使用多波长四维荧光显微镜,我们测量了在稳定单向剪切应力开始前后,主动脉内皮细胞中罗丹明标记的纤连蛋白以及绿色荧光蛋白标记的肌动蛋白、波形蛋白、桩蛋白和/或纽蛋白的位移。在细胞骨架中,剪切应力的开始增加了肌动蛋白向片状伪足的聚合,改变了肌动蛋白应力纤维和波形蛋白丝的横向位移角度,并减少了亚汇合和汇合细胞层中肌动蛋白应力纤维的向心重塑。剪切应力诱导了新粘着斑复合物的形成,并减少了新肌动蛋白聚合区域中粘着斑的向心重塑。粘着斑和纤连蛋白基质的结构动力学随细胞密度而变化。在亚汇合细胞层中,剪切应力的开始减少了粘着斑和纤连蛋白原纤维的位移。在汇合单层中,剪切应力开始后1分钟内,纤连蛋白和粘着斑位移的方向显著向下游方向转变。细胞骨架、粘着斑和细胞外基质结构动力学的这些空间协调的快速变化与机械应力和/或应变在剪切应力介导的机械转导主要位点附近的集中相一致。