Chou Tom, D'Orsogna Maria R
Department of Biomathematics, UCLA, Los Angeles, California 90095-1766, USA.
J Chem Phys. 2007 Sep 14;127(10):105101. doi: 10.1063/1.2764053.
We derive the equations that describe adsorption of diffusing particles onto a surface followed by additional surface kinetic steps before being transported across the interface. Multistage surface kinetics occurs during membrane protein insertion, cell signaling, and the infection of cells by virus particles. For example, viral entry into healthy cells is possible only after a series of receptor and coreceptor binding events occurs at the cellular surface. We couple the diffusion of particles in the bulk phase with the multistage surface kinetics and derive an effective, integrodifferential boundary condition that contains a memory kernel embodying the delay induced by the surface reactions. This boundary condition takes the form of a singular perturbation problem in the limit where particle-surface interactions are short ranged. Moreover, depending on the surface kinetics, the delay kernel induces a nonmonotonic, transient replenishment of the bulk particle concentration near the interface. The approach generalizes that of Ward and Tordai [J. Chem. Phys. 14, 453 (1946)] and Diamant and Andelman [Colloids Surf. A 183-185, 259 (2001)] to include surface kinetics, giving rise to qualitatively new behaviors. Our analysis also suggests a simple scheme by which stochastic surface reactions may be coupled to deterministic bulk diffusion.
我们推导了描述扩散粒子吸附到表面上,然后在穿过界面之前经历额外表面动力学步骤的方程。多阶段表面动力学发生在膜蛋白插入、细胞信号传导以及病毒颗粒感染细胞的过程中。例如,只有在细胞表面发生一系列受体和共受体结合事件之后,病毒才有可能进入健康细胞。我们将体相中粒子的扩散与多阶段表面动力学相结合,推导出一个有效的积分微分边界条件,该条件包含一个记忆核,体现了表面反应引起的延迟。在粒子 - 表面相互作用为短程的极限情况下,这个边界条件呈现出奇异摄动问题的形式。此外,根据表面动力学,延迟核会在界面附近引起体相中粒子浓度的非单调、瞬态补充。该方法将沃德和托尔代 [《化学物理杂志》14, 453 (1946)] 以及迪亚曼特和安德尔曼 [《胶体与界面科学A》183 - 185, 259 (2001)] 的方法进行了推广,以纳入表面动力学,从而产生了定性的新行为。我们的分析还提出了一种简单的方案,通过该方案随机表面反应可与确定性的体相扩散相耦合。