Bhat Javaid Yousuf, Shastri Brahmanaspati Ganapathi, Balaram Hemalatha
Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India.
Biochem J. 2008 Jan 1;409(1):263-73. doi: 10.1042/BJ20070996.
Plasmodium falciparum, the causative agent of the fatal form of malaria, synthesizes GMP primarily from IMP and, hence, needs active GMPS (GMP synthetase) for its survival. GMPS, a G-type amidotransferase, catalyses the amination of XMP to GMP with the reaction occurring in two domains, the GAT (glutamine amidotransferase) and ATPPase (ATP pyrophosphatase). The GAT domain hydrolyses glutamine to glutamate and ammonia, while the ATPPase domain catalyses the formation of the intermediate AMP-XMP from ATP and XMP. Co-ordination of activity across the two domains, achieved through channelling of ammonia from GAT to the effector domain, is the hallmark of amidotransferases. Our studies aimed at understanding the kinetic mechanism of PfGMPS (Plasmodium falciparum GMPS) indicated steady-state ordered binding of ATP followed by XMP to the ATPPase domain with glutamine binding in a random manner to the GAT domain. We attribute the irreversible, Ping Pong step seen in initial velocity kinetics to the release of glutamate before the attack of the adenyl-XMP intermediate by ammonia. Specific aspects of the overall kinetic mechanism of PfGMPS are different from that reported for the human and Escherichia coli enzymes. Unlike human GMPS, absence of tight co-ordination of activity across the two domains was evident in the parasite enzyme. Variations seen in the inhibition by nucleosides and nucleotide analogues between human GMPS and PfGMPS highlighted differences in ligand specificity that could serve as a basis for the design of specific inhibitors. The present study represents the first report on recombinant His-tagged GMPS from parasitic protozoa.
恶性疟原虫是致命形式疟疾的病原体,主要从肌苷酸(IMP)合成鸟苷酸(GMP),因此其生存需要活性鸟苷酸合成酶(GMPS)。GMPS是一种G型酰胺转移酶,催化XMP氨基化为GMP,反应发生在两个结构域,即谷氨酰胺酰胺转移酶(GAT)和ATP焦磷酸酶(ATPPase)。GAT结构域将谷氨酰胺水解为谷氨酸和氨,而ATPPase结构域催化由ATP和XMP形成中间产物AMP-XMP。通过将氨从GAT引导至效应结构域实现两个结构域活性的协调,这是酰胺转移酶的标志。我们旨在了解恶性疟原虫GMPS(PfGMPS)动力学机制的研究表明,ATP稳态有序结合,随后XMP与ATPPase结构域结合,谷氨酰胺以随机方式与GAT结构域结合。我们将初速度动力学中看到的不可逆乒乓步骤归因于在氨攻击腺苷-XMP中间体之前谷氨酸的释放。PfGMPS整体动力学机制的具体方面与已报道的人类和大肠杆菌酶不同。与人类GMPS不同,寄生虫酶中两个结构域活性缺乏紧密协调是明显的。人类GMPS和PfGMPS在核苷和核苷酸类似物抑制方面的差异突出了配体特异性的差异,这可为设计特异性抑制剂提供基础。本研究是关于来自寄生原生动物的重组His标签GMPS的首次报道。