Sun Jyh-Jang, Luhmann Heiko J
Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
Eur J Neurosci. 2007 Oct;26(7):1995-2004. doi: 10.1111/j.1460-9568.2007.05819.x. Epub 2007 Sep 14.
We used a 60-channel microelectrode array to study in thick (600-1000 microm) somatosensory cortical slices from postnatal day (P)0-P3 mice the spatio-temporal properties of early network oscillations. We recorded local non-propagating as well as large-scale propagating spontaneous oscillatory activity. Both types of activity patterns could never be observed in neocortical slices of conventional thickness (400 microm). Local non-propagating spontaneous oscillations with an average peak frequency of 15.6 Hz, duration of 1.7 s and maximal amplitude of 66.8 microV were highly synchronized in a network of approximately 200 microm in diameter. Spontaneous oscillations of lower frequency (10.4 Hz), longer duration (23.8 s) and larger amplitude (142.9 microV) propagated with 0.11 mm/s in the horizontal direction over at least 1 mm. These propagating oscillations were also synchronized in a columnar manner, but these waves synchronized the activity in a larger neuronal network of 300-400 microm in diameter. Both types of spontaneous network activity could be blocked by the gap junction antagonist carbenoxolone. Electrical stimulation of the subplate (SP) or bath application of the cholinergic agonist carbachol also elicited propagating network oscillations, emphasizing the role of the SP and the cholinergic system in the generation of early cortical network oscillations. Our data demonstrate that a sufficiently large network in thick neocortical slice preparations is capable of generating spontaneous and evoked network oscillations, which are highly synchronized via gap junctions in 200-400-microm-wide columns. These via synchronized oscillations coupled networks may represent a self-organized functional template for the activity-dependent formation of neocortical modules during the earliest stages of development.
我们使用60通道微电极阵列,研究出生后第0天至第3天(P0 - P3)小鼠的厚(600 - 1000微米)体感皮层切片中早期网络振荡的时空特性。我们记录了局部非传播性以及大规模传播性的自发振荡活动。这两种活动模式在传统厚度(400微米)的新皮层切片中从未被观察到。平均峰值频率为15.6赫兹、持续时间为1.7秒且最大振幅为66.8微伏的局部非传播性自发振荡,在直径约200微米的网络中高度同步。较低频率(10.4赫兹)、较长持续时间(23.8秒)且较大振幅(142.9微伏)的自发振荡以0.11毫米/秒的速度在水平方向传播至少1毫米。这些传播性振荡也以柱状方式同步,但这些波使直径为300 - 400微米的更大神经元网络中的活动同步。两种类型的自发网络活动都可被缝隙连接拮抗剂卡贝缩酮阻断。对板下层(SP)的电刺激或胆碱能激动剂卡巴胆碱的浴应用也引发了传播性网络振荡,强调了SP和胆碱能系统在早期皮层网络振荡产生中的作用。我们的数据表明,厚新皮层切片制备中足够大的网络能够产生自发和诱发的网络振荡,这些振荡通过200 - 400微米宽的柱状结构中的缝隙连接高度同步。这些通过同步振荡耦合的网络可能代表了发育最早阶段中依赖活动形成新皮层模块的自组织功能模板。