Suppr超能文献

探索缓解抑郁症的序贯治疗方案(STAR*D)研究:初级保健中抑郁症治疗的实际结果及启示

Navigating the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study: practical outcomes and implications for depression treatment in primary care.

作者信息

Cain Robert A

机构信息

Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA.

出版信息

Prim Care. 2007 Sep;34(3):505-19, vi. doi: 10.1016/j.pop.2007.05.006.

Abstract

The Sequenced Treatment Alternatives to Relieve Depression (STAR( *)D) study addressed many clinically relevant issues on treatment of depressed outpatients. The study used an equipoise-stratified randomization scheme that enhanced the real-world expediency of treatment options studied. Because patients who had significant comorbid medical and psychiatric problems were included, and care was provided in the outpatient primary care setting as well as in outpatient psychiatric centers, findings are relevant to primary care physicians. The use of measurement-based treatment protocols promotes objectivity in a realm of often subjective clinical decision making. Although STAR( *)D was unable to provide specific treatment comparisons for patients at all study levels, it succeeded in defining the prevalence of treatment-resistant depression and is a model for further practical clinical outcomes studies.

摘要

缓解抑郁症的序贯治疗方案(STAR()D)研究探讨了许多关于门诊抑郁症患者治疗的临床相关问题。该研究采用了一种均衡分层随机化方案,提高了所研究治疗方案在现实世界中的适用性。由于纳入了患有严重合并症的医学和精神疾病患者,并在门诊初级保健机构以及门诊精神科中心提供护理,因此研究结果对初级保健医生具有参考价值。基于测量的治疗方案的使用在通常主观的临床决策领域中促进了客观性。尽管STAR()D无法为所有研究层面的患者提供具体的治疗比较,但它成功地确定了难治性抑郁症的患病率,并且是进一步实际临床结局研究的典范。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验