Suppr超能文献

Inverse inkjet printed gold micro electrodes for the structured deposition of epithelial cells and fibrin.

作者信息

Zehbe Rolf, Gross Ulrich, Schubert Helmut

机构信息

Technical University Berlin, Institute of Materials Science and Technologies, Englische Strasse 20, Berlin 10587, Germany.

出版信息

Biomol Eng. 2007 Nov;24(5):537-42. doi: 10.1016/j.bioeng.2007.08.012. Epub 2007 Aug 9.

Abstract

The micro structured deposition of vital cells is an important challenge in tissue engineering, biosensor technology, and in all research dealing with cell-cell and cell-substrate contacts. Hence, an inkjet printing technology has been developed to manufacture Au-based micro electrodes by sputter coating inversely printed polyester-foils. These electrodes feature minimal structure sizes of 35 microm and consist of an anode and a cathode part. They were used with fibrinogenic epithelial cell suspensions to deposit human keratinocytes (HaCaT), mouse fibroblasts (L-929) and the protein fibrin by applying DC voltage. Subsequently cells were electrophoretically attracted to the anode, following exactly its shape, while the insoluble fibrin was simultaneously precipitated due to the electrically mediated polymerization of the soluble fibrinogen molecule. Furthermore, it was demonstrated that this technique is suitable to co-deposit both cell types in a layered fashion. The lower voltage boundary for successful deposition was set at approximately 0.8 V needed for the conversion of fibrinogen into fibrin, while the upper voltage boundary was set at approximately 1.85 V, when commencing electrolysis inhibited the deposition of vital cells. Subsequent to the anodic cell-fibrin deposition, cells were cultivated for up to 4 days and then characterized by FDA+EB staining, methyl violet staining, MNF staining and SEM. The conversion from fibrinogen into fibrin was studied using ATR/FTIR.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验