Tal Assaf, Frydman Lucio
Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel.
J Magn Reson. 2007 Nov;189(1):46-58. doi: 10.1016/j.jmr.2007.08.003. Epub 2007 Aug 11.
We have recently proposed a protocol for retrieving multidimensional magnetic resonance images within a single scan, based on a spatial encoding of the spin interactions. This methodology relies on progressively dephasing spin coherences throughout a sample; for instance, by sweeping a radiofrequency pulse in the presence of a magnetic field gradient. When spins are suitably refocused by a second (acquisition) field gradient, this yields a time-domain signal reflecting in its magnitude the spatial distribution of spins throughout the sample. It is hereby shown that whereas the absolute value of the resulting signals conveys such imaging information, the hitherto unutilized phase modulation of the signal encodes the chemical shift offsets of the present speciae. Spectroscopically-resolved multidimensional images can thereby be retrieved in this fashion at no additional expense in either experimental complexity, sensitivity or acquisition time--simply by performing an additional analysis of the collected data. The resulting approach to single-scan spectroscopic imaging can also incorporate "RF shimming" compensating abilities, capable of providing high-resolution spectral and high-definition imaging data even under the presence of substantial magnetic field inhomogeneities. The principles of these methodologies as applied to spectroscopic imaging are briefly reviewed and compared against the background of traditional Fourier-based single-scan spectroscopic imaging protocols. Demonstrations of these new multidimensional spectroscopic MRI experiments on simple phantoms are also given.
我们最近提出了一种基于自旋相互作用的空间编码在单次扫描中检索多维磁共振图像的方案。这种方法依赖于在整个样本中逐渐使自旋相干失相;例如,通过在磁场梯度存在的情况下扫描射频脉冲。当自旋被第二个(采集)场梯度适当地重新聚焦时,这会产生一个时域信号,其幅度反映了整个样本中自旋的空间分布。由此表明,虽然所得信号的绝对值传达了此类成像信息,但信号迄今未被利用的相位调制对当前物种的化学位移偏移进行了编码。因此,通过对收集到的数据进行额外分析,无需在实验复杂性、灵敏度或采集时间上增加额外成本,就可以以这种方式检索光谱分辨的多维图像。由此产生的单扫描光谱成像方法还可以纳入“射频匀场”补偿能力,即使在存在大量磁场不均匀性的情况下,也能够提供高分辨率光谱和高清晰度成像数据。本文简要回顾了这些应用于光谱成像的方法的原理,并在传统基于傅里叶的单扫描光谱成像协议的背景下进行了比较。还给出了在简单模型上进行这些新的多维光谱MRI实验的演示。