Mamedov Tarlan G, Padhye Nisha V, Viljoen Hendrik, Subramanian Anuradha
Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0643, USA.
J Biotechnol. 2007 Sep 30;131(4):379-87. doi: 10.1016/j.jbiotec.2007.08.010. Epub 2007 Aug 10.
The assembly of synthetic oligonucleotides into genes and genomes is an important methodology. Several methodologies for such synthesis have been developed, but they have two drawbacks: (1) the processes are slow and (2) the error frequencies are high (typically 1-3 errors/kb of DNA). Thermal damage is a major contributor to biosynthetic errors. In this paper, we elucidate the advantages of rapid gene synthesis by polymerase chain assembly (PCA) when used in combination with smart error control strategies. We used a high-speed thermocycler (PCRJet) to effectively minimize thermal damage and to perform rapid assembly of synthetic oligonucleotides to construct two different genes: endothelial protein C receptor (EPCR) and endothelial cell thrombin receptor, thrombomodulin (TM). First, the intact EPCR gene (EPCR-1, 612 bp) and a mutant EPCR-2 (576 bp) that lacked 4 N-linked glycosylation sites were constructed from 35 and 33 oligonucleotides, respectively. Next, for direct error comparison, another longer gene, the 1548 bp TM gene was constructed from 87 oligonucleotides by both rapid and conventional PCA. The fidelity and accuracy of the synthetic genes generated in this manner were confirmed by sequencing. The combined steps of PCA and DNA amplification are completed in about 10 and 22 min for EPCR-1, 2 and TM genes, respectively with comparable low errors in the DNA sequence. Furthermore, we subcloned synthetic TM, EPCR-1, EPCR-2 and native EPCR-1 (amplified from cDNA) into a Pichia pastoris expression vector to evaluate the expression ability, and to compare them with the native gene. Here, we illustrate that the synthetic genes, assembled by rapid PCA, successfully directed the expression of functional proteins. And, importantly, the synthetic and the native genes expressed proteins with the same efficiency.
将合成寡核苷酸组装成基因和基因组是一种重要的方法。已经开发了几种用于这种合成的方法,但它们有两个缺点:(1)过程缓慢,(2)错误频率高(通常为每千碱基DNA 1-3个错误)。热损伤是生物合成错误的主要原因。在本文中,我们阐明了聚合酶链组装(PCA)与智能错误控制策略结合使用时快速基因合成的优势。我们使用高速热循环仪(PCRJet)有效减少热损伤,并对合成寡核苷酸进行快速组装以构建两个不同的基因:内皮蛋白C受体(EPCR)和内皮细胞凝血酶受体血栓调节蛋白(TM)。首先,分别从35个和33个寡核苷酸构建完整的EPCR基因(EPCR-1,612 bp)和缺少4个N-连接糖基化位点的突变型EPCR-2(576 bp)。接下来,为了进行直接错误比较,通过快速和传统的PCA从87个寡核苷酸构建另一个更长的基因,1548 bp的TM基因。通过测序确认以这种方式产生的合成基因的保真度和准确性。PCA和DNA扩增的组合步骤分别在约10分钟和22分钟内完成EPCR-1、2和TM基因的构建,DNA序列中的错误率相当低。此外,我们将合成的TM、EPCR-1、EPCR-2和天然EPCR-1(从cDNA扩增)亚克隆到毕赤酵母表达载体中,以评估表达能力,并与天然基因进行比较。在这里,我们表明通过快速PCA组装的合成基因成功指导了功能蛋白的表达。重要的是,合成基因和天然基因表达蛋白的效率相同。