Camou J P, Mares S W, Marchello J A, Vazquez R, Taylor M, Thompson V F, Goll D E
Muscle Biology Group, University of Arizona, Tucson 85721, USA.
J Anim Sci. 2007 Dec;85(12):3400-14. doi: 10.2527/jas.2007-0356. Epub 2007 Sep 18.
Evidence has indicated that mu-calpain, m-calpain, and calpastatin have important roles in the proteolytic degradation that results in postmortem tenderization. Simple assays of these 3 proteins at different times postmortem, however, has shown that calpastatin and mu-calpain both rapidly lose their activity during postmortem storage, so that proteolytic activity of mu-calpain is nearly zero after 3 d postmortem, even when assayed at pH 7.5 and 25 degrees C, and ability of calpastatin to inhibit the calpains is 30% or less of its ability when assayed at death. m-Calpain, however, retains much of its proteolytic activity during postmortem storage, but the Ca(2+) requirement of m-calpain is much higher than that reported to exist in postmortem muscle. Consequently, it is unclear how the calpain system functions in postmortem muscle. To clarify this issue, we have initiated attempts to purify the 2 calpains and calpastatin from bovine semitendinosus muscle after 11-13 d postmortem. The known properties of the calpains and calpastatin in postmortem muscle have important effects on approaches that can be used to purify them. A hexyl-TSK hydrophobic interaction column is a critical first step in separating calpastatin from the 2 calpains in postmortem muscle. Dot-blot assays were used to detect proteolytically inactive mu-calpain. After 2 column chromatographic steps, 5 fractions can be identified: 1) calpastatin I that does not bind to an anion-exchange matrix, that does not completely inhibit the calpains, and that consists of small polypeptides <60 kDa; 2) calpastatin II that binds weakly to an anion-exchange matrix and that contains polypeptides <60 kDa; all these polypeptides are smaller than the native 115- to 125-kDa skeletal muscle calpastatin; 3) proteolytically active mu-calpain even though very little mu-calpain activity can be detected in zymogram assays of muscle extracts from 11- to 13-d postmortem muscle; this mu-calpain has an autolyzed 76-kDa large subunit but the small subunit consists of 24-, 26- and a small amount of unautolyzed 28-kDa polypeptides; 4) proteolytically active m-calpain that is not autolyzed; and 5) proteolytically inactive mu-calpain whose large subunit is autolyzed to a 76-kDa polypeptide and whose small subunit contains polypeptides similar to the proteolytically active mu-calpain. Hence, loss of calpastatin activity in postmortem muscle is due to its degradation, but the cause of the loss of mu-calpain activity remains unknown.
有证据表明,μ-钙蛋白酶、m-钙蛋白酶和钙蛋白酶抑制蛋白在导致宰后嫩化的蛋白水解降解过程中发挥着重要作用。然而,在宰后不同时间对这三种蛋白质进行的简单分析表明,钙蛋白酶抑制蛋白和μ-钙蛋白酶在宰后储存期间均迅速丧失活性,以至于μ-钙蛋白酶的蛋白水解活性在宰后3天几乎为零,即使在pH 7.5和25℃下进行测定也是如此,并且钙蛋白酶抑制蛋白抑制钙蛋白酶的能力仅为宰后刚测定时的30%或更低。然而,m-钙蛋白酶在宰后储存期间仍保留其大部分蛋白水解活性,但其对Ca(2+)的需求远高于宰后肌肉中报道的水平。因此,目前尚不清楚钙蛋白酶系统在宰后肌肉中是如何发挥作用的。为了阐明这个问题,我们已开始尝试从宰后11 - 13天的牛半腱肌中纯化这两种钙蛋白酶和钙蛋白酶抑制蛋白。钙蛋白酶和钙蛋白酶抑制蛋白在宰后肌肉中的已知特性对可用于纯化它们的方法有重要影响。己基-TSK疏水相互作用柱是从宰后肌肉中的两种钙蛋白酶中分离钙蛋白酶抑制蛋白的关键第一步。斑点印迹分析用于检测蛋白水解无活性的μ-钙蛋白酶。经过两步柱色谱后,可鉴定出5个组分:1)不与阴离子交换基质结合、不能完全抑制钙蛋白酶且由小于60 kDa的小多肽组成的钙蛋白酶抑制蛋白I;2)与阴离子交换基质弱结合且含有小于60 kDa多肽的钙蛋白酶抑制蛋白II;所有这些多肽都比天然的115 - 125 kDa骨骼肌钙蛋白酶抑制蛋白小;3)蛋白水解有活性的μ-钙蛋白酶,尽管在宰后11至13天的肌肉提取物的酶谱分析中只能检测到极少的μ-钙蛋白酶活性;这种μ-钙蛋白酶有一个自溶的76 kDa大亚基,但小亚基由24 kDa、26 kDa和少量未自溶的28 kDa多肽组成;4)未自溶的蛋白水解有活性的m-钙蛋白酶;5)蛋白水解无活性的μ-钙蛋白酶,其大亚基自溶为76 kDa多肽,小亚基含有与蛋白水解有活性的μ-钙蛋白酶相似的多肽。因此,宰后肌肉中钙蛋白酶抑制蛋白活性的丧失是由于其降解,但μ-钙蛋白酶活性丧失的原因仍然未知。