Suppr超能文献

兰尼碱受体孔道阻断剂新霉素也通过一个此前未被描述的高亲和力钙离子结合位点来抑制通道活性。

The ryanodine receptor pore blocker neomycin also inhibits channel activity via a previously undescribed high-affinity Ca(2+) binding site.

作者信息

Laver Derek R, Hamada Tomoyo, Fessenden James D, Ikemoto Noriaki

机构信息

School of Biomedical Sciences, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.

出版信息

J Membr Biol. 2007 Dec;220(1-3):11-20. doi: 10.1007/s00232-007-9067-3. Epub 2007 Sep 18.

Abstract

In this study, we present evidence for the mechanism of neomycin inhibition of skeletal ryanodine receptors (RyRs). In single-channel recordings, neomycin produced monophasic inhibition of RyR open probability and biphasic inhibition of [(3)H]ryanodine binding. The half-maximal inhibitory concentration (IC(50)) for channel blockade by neomycin was dependent on membrane potential and cytoplasmic [Ca(2+)], suggesting that neomycin acts both as a pore plug and as a competitive antagonist at a cytoplasmic Ca(2+) binding site that causes allosteric inhibition. This novel Ca(2+)/neomycin binding site had a neomycin affinity of 100 nM: and a Ca(2+) affinity of 35 nM,: which is 30-fold higher than that of the well-described cytoplasmic Ca(2+) activation site. Therefore, a new high-affinity class of Ca(2+) binding site(s) on the RyR exists that mediates neomycin inhibition. Neomycin plugging of the channel pore induced brief (1-2 ms) conductance substates at 30% of the fully open conductance, whereas allosteric inhibition caused complete channel closure with durations that depended on the neomycin concentration. We quantitatively account for these results using a dual inhibition model for neomycin that incorporates voltage-dependent pore plugging and Ca(2+)-dependent allosteric inhibition.

摘要

在本研究中,我们提供了新霉素抑制骨骼肌兰尼碱受体(RyRs)机制的证据。在单通道记录中,新霉素对RyR开放概率产生单相抑制,对[³H]兰尼碱结合产生双相抑制。新霉素阻断通道的半数最大抑制浓度(IC₅₀)取决于膜电位和细胞质[Ca²⁺],这表明新霉素既作为孔道堵塞剂,又作为细胞质Ca²⁺结合位点的竞争性拮抗剂,从而引起变构抑制。这个新的Ca²⁺/新霉素结合位点对新霉素的亲和力为100 nM,对Ca²⁺的亲和力为35 nM,比已充分描述的细胞质Ca²⁺激活位点的亲和力高30倍。因此,RyR上存在一类新的高亲和力Ca²⁺结合位点,介导新霉素抑制作用。新霉素堵塞通道孔道会在完全开放电导的30%处诱导短暂(1 - 2毫秒)的电导亚状态,而异构抑制会导致通道完全关闭,其持续时间取决于新霉素浓度。我们使用一个新霉素的双重抑制模型来定量解释这些结果,该模型纳入了电压依赖性孔道堵塞和Ca²⁺依赖性变构抑制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验