O'Connor Michael P, Agosta Salvatore J, Hansen Frank, Kemp Stanley J, Sieg Annette E, McNair James N, Dunham Arthur E
Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania 19104, USA.
Am Nat. 2007 Sep;170(3):431-42. doi: 10.1086/519459. Epub 2007 Jul 24.
Physiological and ecological allometries often pose linear regression problems characterized by (1) noncausal, phylogenetically autocorrelated independent (x) and dependent (y) variables (characters); (2) random variation in both variables; and (3) a focus on regression slopes (allometric exponents). Remedies for the phylogenetic autocorrelation of species values (phylogenetically independent contrasts) and variance structure of the data (reduced major axis [RMA] regression) have been developed, but most functional allometries are reported as ordinary least squares (OLS) regression without use of phylogenetically independent contrasts. We simulated Brownian diffusive evolution of functionally related characters and examined the importance of regression methodologies and phylogenetic contrasts in estimating regression slopes for phylogenetically constrained data. Simulations showed that both OLS and RMA regressions exhibit serious bias in estimated regression slopes under different circumstances but that a modified orthogonal (least squares variance-oriented residual [LSVOR]) regression was less biased than either OLS or RMA regressions. For strongly phylogenetically structured data, failure to use phylogenetic contrasts as regression data resulted in overestimation of the strength of the regression relationship and a significant increase in the variance of the slope estimate. Censoring of data sets by simulated extinction of taxa did not affect the importance of appropriate regression models or the use of phylogenetic contrasts.
生理和生态异速生长常常带来线性回归问题,其特点包括:(1)非因果关系、系统发育自相关的独立(x)和因变量(y)变量(性状);(2)两个变量都存在随机变异;(3)关注回归斜率(异速生长指数)。针对物种值的系统发育自相关(系统发育独立对比)和数据的方差结构(主轴缩减[RMA]回归)已经开发出了补救方法,但大多数功能异速生长都报告为普通最小二乘法(OLS)回归,而未使用系统发育独立对比。我们模拟了功能相关性状的布朗扩散进化,并研究了回归方法和系统发育对比在估计系统发育受限数据的回归斜率中的重要性。模拟结果表明,在不同情况下,OLS和RMA回归在估计回归斜率时都表现出严重偏差,但改进的正交(最小二乘方差导向残差[LSVOR])回归的偏差小于OLS或RMA回归。对于系统发育结构强烈的数据,不使用系统发育对比作为回归数据会导致对回归关系强度的高估以及斜率估计方差的显著增加。通过模拟分类单元灭绝来审查数据集并不影响适当回归模型的重要性或系统发育对比的使用。