Suppr超能文献

基于电离室的高量子效率原型电子射野成像设备中复合的影响。

Effect of recombination in a high quantum efficiency prototype ionization-chamber-based electronic portal imaging device.

作者信息

Gopal A, Samant S S

机构信息

Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611-8300, USA.

出版信息

Med Phys. 2007 Aug;34(8):3224-32. doi: 10.1118/1.2750969.

Abstract

The quantum efficiency (QE) of an imaging detector can be increased by utilizing a thick, high-density detection medium to increase the number of quantum interactions. However, image quality is more accurately described by the detection quantum efficiency (DQE). If a significant fraction of the increase in the number of detected quanta from a thick, dense detector were to result in useful imaging signal, this represents a favorable case where enhanced QE leads to increased DQE. However, for ionization-type detectors, one factor that limits DQE is the recombination between ion pairs that acts as a secondary quantum sink due to which enhancement in QE may not result in higher DQE depending on the extent of the signal loss from recombination. Therefore, an analysis of signal loss mechanisms or quantum sinks in an imaging system is essential for validating the overall benefit of high QE detectors. In this paper, a study of ion recombination as a secondary quantum sink is presented for a high QE prototype ion-chamber-based electronic portal imaging device (EPID): the kinestatic charge detector (KCD). The KCD utilizes a high pressure noble gas (krypton or xenon at 100 atm) and an arbitrarily large detector thickness (of the order of centimeters), resulting in a high QE imager. Compared with commercial amorphous silicon flat panel imagers that provide DQE(0) approximately 0.01, the KCD has much higher DQE. Studies indicated that DQE(0) = 0.20 for 6.1 cm thick, 100 atm (rho = 3.4 g/cm3) xenon chamber, and DQE(0)=0.34 for a 9.1 cm thick chamber. A series of experiments was devised and conducted to determine the signal loss due to recombination for a KCD chamber. The measurements indicated a fractional recombination loss of about 14% for a krypton chamber and about 18% for a xenon chamber under standard operating conditions (100 atm chamber pressure and 1275 V/cm electric field intensity). A theoretical treatment of the effect of recombination on imaging signal-to-noise ratio was applied to quantify the loss in DQE. These calculations indicated that recombination had a limited effect (<2%) on DQE under standard operating conditions. This was validated by good agreement between experimentally measured DQE and that obtained using Monte Carlo simulations that did not account for recombination.

摘要

成像探测器的量子效率(QE)可以通过使用厚的、高密度的探测介质来增加量子相互作用的数量得以提高。然而,图像质量更准确地由探测量子效率(DQE)来描述。如果来自厚的、致密探测器的探测量子数量增加的很大一部分能产生有用的成像信号,这代表了一种有利情况,即增强的QE导致DQE增加。然而,对于电离型探测器,限制DQE的一个因素是离子对之间的复合,这作为一个二次量子汇,由于复合导致的信号损失程度不同,QE的增强可能不会导致更高的DQE。因此,分析成像系统中的信号损失机制或量子汇对于验证高QE探测器的整体益处至关重要。在本文中,针对一种基于高QE原型离子室的电子射野成像装置(EPID)——动态电荷探测器(KCD),开展了作为二次量子汇的离子复合研究。KCD使用高压惰性气体(100个大气压下的氪或氙)和任意大的探测器厚度(厘米量级),从而形成一个高QE成像器。与提供的DQE(0)约为0.01的商用非晶硅平板成像器相比,KCD具有更高的DQE。研究表明,对于6.1厘米厚、100个大气压(ρ = 3.4克/立方厘米)的氙气室,DQE(0) = 0.20;对于9.1厘米厚的气室,DQE(0) = 0.34。设计并进行了一系列实验,以确定KCD气室因复合导致的信号损失。测量结果表明,在标准操作条件(100个大气压的气室压力和1275伏/厘米的电场强度)下,氪气室的复合损失分数约为14%,氙气室约为18%。应用了关于复合对成像信噪比影响的理论处理方法来量化DQE的损失。这些计算表明,在标准操作条件下,复合对DQE的影响有限(<2%)。这通过实验测量的DQE与未考虑复合的蒙特卡罗模拟获得的DQE之间的良好一致性得到了验证。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验