Kaernbach C
Laboratoire d'Audiologie Expérimentale, Bordeaux, France.
Percept Psychophys. 1991 Nov;50(5):498-506. doi: 10.3758/bf03205066.
The Gaussian model of signal detection cannot fit asymmetric data as long as the variances of the distributions are kept equal. It is therefore common practice to assume unequal variances in order to fit these data. But this assumption leads to the well-known crossover problem. The present paper provides new arguments for the abandonment of the Gaussian model with unequal variances. In its stead, this paper reevaluates multiple-parallel-threshold models. In particular, the Poisson model turns out to be very useful: it can handle data with any degree of asymmetry, giving a reasonable interpretation of the two parameters of the receiver-operating characteristic. The three-state-threshold model (Krantz, 1969) is given a new interpretation in light of the Poisson model. The slope of Poisson double-probability plots turns out to be much closer to unity than is predicted by the Gaussian approximation.
只要分布的方差保持相等,信号检测的高斯模型就无法拟合不对称数据。因此,为了拟合这些数据,通常会假设方差不相等。但这一假设会导致众所周知的交叉问题。本文为放弃具有不相等方差的高斯模型提供了新的论据。取而代之的是,本文重新评估了多平行阈值模型。特别是,泊松模型被证明非常有用:它可以处理任何不对称程度的数据,对接收器操作特性的两个参数给出合理的解释。根据泊松模型,对三态阈值模型(克兰茨,1969年)给出了新的解释。结果表明,泊松双概率图的斜率比高斯近似预测的更接近1。