Edwards A M, Brindley J
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
Bull Math Biol. 1999 Mar;61(2):303-39. doi: 10.1006/bulm.1998.0082.
We investigate the dynamical behaviour of a simple plankton population model, which explicitly simulates the concentrations of nutrient, phytoplankton and zooplankton in the oceanic mixed layer. The model consists of three coupled ordinary differential equations. We use analytical and numerical techniques, focusing on the existence and nature of steady states and unforced oscillations (limit cycles) of the system. The oscillations arise from Hopf bifurcations, which are traced as each parameter in the model is varied across a realistic range. The resulting bifurcation diagrams are compared with those from our previous work, where zooplankton mortality was simulated by a quadratic function-here we use a linear function, to represent alternative ecological assumptions. Oscillations occur across broader ranges of parameters for the linear mortality function than for the quadratic one, although the two sets of bifurcation diagrams show similar qualitative characteristics. The choice of zooplankton mortality function, or closure term, is an area of current interest in the modelling community, and we relate our results to simulations of other models.
我们研究了一个简单的浮游生物种群模型的动力学行为,该模型明确模拟了海洋混合层中营养物质、浮游植物和浮游动物的浓度。该模型由三个耦合的常微分方程组成。我们使用解析和数值技术,重点关注系统稳态和无强迫振荡(极限环)的存在性和性质。振荡源于霍普夫分岔,随着模型中的每个参数在实际范围内变化,对其进行追踪。将得到的分岔图与我们之前的工作进行比较,在之前的工作中,浮游动物死亡率由二次函数模拟——这里我们使用线性函数,以代表不同的生态假设。尽管两组分岔图显示出相似的定性特征,但线性死亡率函数的振荡出现在比二次函数更广泛的参数范围内。浮游动物死亡率函数或封闭项的选择是当前建模界感兴趣的一个领域,我们将我们的结果与其他模型的模拟联系起来。