Information Systems and Modeling, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA.
Earth and Environmental Sciences, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA.
J Med Entomol. 2022 Nov 16;59(6):1947-1959. doi: 10.1093/jme/tjac127.
While the number of human cases of mosquito-borne diseases has increased in North America in the last decade, accurate modeling of mosquito population density has remained a challenge. Longitudinal mosquito trap data over the many years needed for model calibration, and validation is relatively rare. In particular, capturing the relative changes in mosquito abundance across seasons is necessary for predicting the risk of disease spread as it varies from year to year. We developed a discrete, semi-stochastic, mechanistic process-based mosquito population model that captures life-cycle egg, larva, pupa, adult stages, and diapause for Culex pipiens (Diptera, Culicidae) and Culex restuans (Diptera, Culicidae) mosquito populations. This model combines known models for development and survival into a fully connected age-structured model that can reproduce mosquito population dynamics. Mosquito development through these stages is a function of time, temperature, daylight hours, and aquatic habitat availability. The time-dependent parameters are informed by both laboratory studies and mosquito trap data from the Greater Toronto Area. The model incorporates city-wide water-body gauge and precipitation data as a proxy for aquatic habitat. This approach accounts for the nonlinear interaction of temperature and aquatic habitat variability on the mosquito life stages. We demonstrate that the full model predicts the yearly variations in mosquito populations better than a statistical model using the same data sources. This improvement in modeling mosquito abundance can help guide interventions for reducing mosquito abundance in mitigating mosquito-borne diseases like West Nile virus.
尽管在过去十年中,北美的蚊媒疾病的人类病例数量有所增加,但准确地对蚊子种群密度进行建模一直是一个挑战。用于模型校准和验证的多年纵向蚊子诱捕数据相对较少。特别是,为了预测疾病传播的风险,需要捕捉到蚊子丰度在不同季节的相对变化,因为这种变化每年都不同。我们开发了一种离散的、半随机的、基于机制的蚊子种群模型,该模型可以捕捉到库蚊(双翅目,蚊科)和致倦库蚊(双翅目,蚊科)蚊子种群的生命周期卵、幼虫、蛹和滞育期。该模型将已知的发育和生存模型结合到一个完全连接的年龄结构模型中,该模型可以重现蚊子种群的动态。蚊子通过这些阶段的发育是时间、温度、日光小时和水生栖息地可用性的函数。时间相关参数是由实验室研究和多伦多大都市区的蚊子诱捕数据共同提供的。该模型将全市的水体水位计和降水数据作为水生栖息地的替代物。这种方法考虑了温度和水生栖息地变化对蚊子生命阶段的非线性相互作用。我们证明,与使用相同数据源的统计模型相比,完整模型可以更好地预测蚊子种群的年变化。这种对蚊子丰度建模的改进可以帮助指导干预措施,以减少蚊子数量,从而减轻西尼罗河病毒等蚊媒疾病的传播。