Dragonetti Claudia, Falciola Luigi, Mussini Patrizia, Righetto Stefania, Roberto Dominique, Ugo Renato, Valore Adriana, De Angelis Filippo, Fantacci Simona, Sgamellotti Antonio, Ramon Miguel, Muccini Michele
Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Dipartimento di Chimica Fisica ed Elettrochimica, Centro di Eccellenza CIMAINA dell'Università di Milano, Istituto di Scienze e Tecnologie Molecolari, Milano, Italy.
Inorg Chem. 2007 Oct 15;46(21):8533-47. doi: 10.1021/ic700414z. Epub 2007 Sep 21.
The photophysical and electrochemical properties of the novel complexes [Ir(ppy)(2)(5-X-1,10-phen)][PF(6)] (ppy = 2-phenylpyridine, phen = phenanthroline, X = NMe(2), NO(2)), [Ir(pq)(2)(5-X-1,10-phen)][PF(6)] (pq = 2-phenylquinoline, X = H, Me, NMe(2), NO(2)), [Ir(ppy)2(4-Me,7-Me-1,10-phen)][PF(6)], [Ir(ppy)2(5-Me,6-Me-1,10-phen)][PF(6)], [Ir(ppy)(2)(2-Me,9-Me-1,10-phen)][PF(6)], and [Ir(pq)2(4-Ph,7-Ph-1,10-phen)][PF(6)] have been investigated and compared with those of the known reference complexes [Ir(ppy)(2)(4-Me or 5-H or 5-Me-1,10-phen)][PF(6)] and [Ir(ppy)(2)(4-Ph,7-Ph-1,10-phen)][PF(6)], showing how the nature and number of the phenanthroline substituents tune the color of the emission, its quantum yield, and the emission lifetime. It turns out that the quantum yield is strongly dependent on the nonradiative decay. The geometry, ground state, electronic structure, and excited electronic states of the investigated complexes have been calculated on the basis of density functional theory (DFT) and time-dependent DFT approaches, thus substantiating the electrochemical measurements and providing insight into the electronic origin of the absorption spectra and of the lowest excited states involved in the light emission process. These results provide useful guidelines for further tailoring of the photophysical properties of ionic Ir(III) complexes.
新型配合物[Ir(ppy)(2)(5-X-1,10-phen)][PF(6)](ppy = 2-苯基吡啶,phen = 菲咯啉,X = NMe(2),NO(2))、[Ir(pq)(2)(5-X-1,10-phen)][PF(6)](pq = 2-苯基喹啉,X = H,Me,NMe(2),NO(2))、[Ir(ppy)2(4-Me,7-Me-1,10-phen)][PF(6)]、[Ir(ppy)2(5-Me,6-Me-1,10-phen)][PF(6)]、[Ir(ppy)(2)(2-Me,9-Me-1,10-phen)][PF(6)]以及[Ir(pq)2(4-Ph,7-Ph-1,10-phen)][PF(6)]的光物理和电化学性质已被研究,并与已知的参考配合物[Ir(ppy)(2)(4-Me或5-H或5-Me-1,10-phen)][PF(6)]和[Ir(ppy)(2)(4-Ph,7-Ph-1,10-phen)][PF(6)]进行了比较,展示了菲咯啉取代基的性质和数量如何调节发射颜色、量子产率以及发射寿命。结果表明,量子产率强烈依赖于非辐射衰变。基于密度泛函理论(DFT)和含时DFT方法计算了所研究配合物的几何结构、基态、电子结构和激发电子态,从而证实了电化学测量结果,并深入了解了吸收光谱以及发光过程中涉及的最低激发态的电子起源。这些结果为进一步定制离子型Ir(III)配合物的光物理性质提供了有用的指导。