Gabriel Frédéric L P, Cyris Maike, Giger Walter, Kohler Hans-Peter E
Swiss Federal Institute for Aquatic Science and Technology (Eawag), CH-8600 Dübendorf.
Chem Biodivers. 2007 Sep;4(9):2123-37. doi: 10.1002/cbdv.200790170.
Sphingobium xenophagum Bayram is capable of metabolizing 4-alkoxyphenols and endocrine disruptive alpha-quaternary 4-nonylphenols by an ipso-substitution mechanism that involves ring hydroxylation at the site of the substituent. Here, we show that Bayram's ipso-hydroxylating activity was able to transform also bisphenol A (= dimethyl-4,4'-methylenediphenol; BPA) and 4-isopropylphenol. We identified six metabolites when resting cells of strain Bayram were incubated with BPA. They were unambiguously characterized by HPLC-UV, HPLC/MS, and HPLC/MS/MS as hydroquinone, 2-(4-hydroxyphenyl)isopropanol, 4-isopropenylphenol, 4-isopropylphenol, 4-hydroxy-4-isopropenylcyclohexa-2,5-dien-1-one, and 4-hydroxy-4-isopropylcyclohexa-2,5-dien-1-one. In experiments with 4-isopropylphenol as a substrate, 4-hydroxy-4-isopropylcyclohexa-2,5-dien-1-one, one of the metabolites from BPA, accumulated to a high degree. We could rationalize the formation of all metabolites by invoking ipso-hydroxylation and ipso-substitution mechanisms. On closer view, also classical bacterial metabolism of BPA can be well rationalized by an ipso-substitution mechanism, albeit with ipso-attack of an internal alkyl radical instead of an activated oxygen species. This highlights the important role of ipso-substitution as a versatile degradative principle utilized by diverse organisms to degrade alpha-quaternary 4-nonylphenols, 4-alkoxyphenols, and BPA.
食异鞘氨醇杆菌Bayram能够通过一种原位取代机制代谢4-烷氧基酚和具有内分泌干扰性的α-季铵盐4-壬基酚,该机制涉及在取代基位点进行环羟基化。在此,我们表明Bayram的原位羟基化活性也能够转化双酚A(= 4,4'-亚甲基二酚二甲醚;BPA)和4-异丙基酚。当用BPA培养Bayram菌株的静息细胞时,我们鉴定出了六种代谢产物。通过高效液相色谱 - 紫外检测(HPLC - UV)、高效液相色谱 - 质谱联用(HPLC/MS)和高效液相色谱 - 串联质谱联用(HPLC/MS/MS)明确表征它们为对苯二酚、2-(4-羟基苯基)异丙醇、4-异丙烯基酚、4-异丙基酚、4-羟基-4-异丙烯基环己-2,5-二烯-1-酮和4-羟基-4-异丙基环己-2,5-二烯-1-酮。在用4-异丙基酚作为底物的实验中,BPA的一种代谢产物4-羟基-4-异丙基环己-2,5-二烯-1-酮大量积累。通过引入原位羟基化和原位取代机制,我们可以合理地解释所有代谢产物的形成。仔细观察发现,BPA的经典细菌代谢也可以通过原位取代机制得到很好的解释,尽管是内部烷基自由基而不是活性氧物种进行原位攻击。这突出了原位取代作为一种通用降解原理的重要作用,不同生物体利用它来降解α-季铵盐4-壬基酚、4-烷氧基酚和BPA。