Department of Research, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
Appl Environ Microbiol. 2010 Oct;76(20):6733-40. doi: 10.1128/AEM.00258-10. Epub 2010 Aug 27.
We isolated three Sphingobium fuliginis strains from Phragmites australis rhizosphere sediment that were capable of utilizing 4-tert-butylphenol as a sole carbon and energy source. These strains are the first 4-tert-butylphenol-utilizing bacteria. The strain designated TIK-1 completely degraded 1.0 mM 4-tert-butylphenol in basal salts medium within 12 h, with concomitant cell growth. We identified 4-tert-butylcatechol and 3,3-dimethyl-2-butanone as internal metabolites by gas chromatography-mass spectrometry. When 3-fluorocatechol was used as an inactivator of meta-cleavage enzymes, strain TIK-1 could not degrade 4-tert-butylcatechol and 3,3-dimethyl-2-butanone was not detected. We concluded that metabolism of 4-tert-butylphenol by strain TIK-1 is initiated by hydroxylation to 4-tert-butylcatechol, followed by a meta-cleavage pathway. Growth experiments with 20 other alkylphenols showed that 4-isopropylphenol, 4-sec-butylphenol, and 4-tert-pentylphenol, which have alkyl side chains of three to five carbon atoms with α-quaternary or α-tertiary carbons, supported cell growth but that 4-n-alkylphenols, 4-tert-octylphenol, technical nonylphenol, 2-alkylphenols, and 3-alkylphenols did not. The rate of growth on 4-tert-butylphenol was much higher than that of growth on the other alkylphenols. Degradation experiments with various alkylphenols showed that strain TIK-1 cells grown on 4-tert-butylphenol could degrade 4-alkylphenols with variously sized and branched side chains (ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, tert-pentyl, n-hexyl, n-heptyl, n-octyl, tert-octyl, n-nonyl, and branched nonyl) via a meta-cleavage pathway but not 2- or 3-alkylphenols. Along with the degradation of these alkylphenols, we detected methyl alkyl ketones that retained the structure of the original alkyl side chains. Strain TIK-1 may be useful in the bioremediation of environments polluted by 4-tert-butylphenol and various other 4-alkylphenols.
我们从芦苇根际沉积物中分离到三株能够以 4-叔丁基苯酚作为唯一碳源和能源的腐泥寡养单胞菌菌株。这些菌株是首批能够利用 4-叔丁基苯酚的细菌。菌株 TIK-1 在基础盐培养基中 12 小时内完全降解 1.0mM 的 4-叔丁基苯酚,同时伴随着细胞生长。我们通过气相色谱-质谱联用仪鉴定出 4-叔丁基儿茶酚和 3,3-二甲基-2-丁酮作为内部代谢物。当 3-氟儿茶酚被用作间位裂解酶失活剂时,TIK-1 菌株不能降解 4-叔丁基儿茶酚,也未检测到 3,3-二甲基-2-丁酮。我们得出结论,TIK-1 菌株代谢 4-叔丁基苯酚是通过羟化生成 4-叔丁基儿茶酚起始的,随后是间位裂解途径。用 20 种其他烷基苯酚进行的生长实验表明,具有三到五个碳原子烷基侧链且带有 α-季碳或 α-叔碳的 4-异丙基苯酚、4-仲丁基苯酚和 4-叔戊基苯酚支持细胞生长,但 4-正烷基苯酚、4-叔辛基苯酚、工业壬基酚、2-烷基苯酚和 3-烷基苯酚则不支持。在 4-叔丁基苯酚上的生长速率远高于在其他烷基苯酚上的生长速率。用各种烷基苯酚进行的降解实验表明,在 4-叔丁基苯酚上生长的 TIK-1 细胞可以通过间位裂解途径降解具有各种大小和支化侧链的 4-烷基苯酚(乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、正戊基、叔戊基、正己基、正庚基、正辛基、叔辛基、正壬基和支化壬基),但不能降解 2-或 3-烷基苯酚。在这些烷基苯酚降解的同时,我们检测到保留了原始烷基侧链结构的甲基烷基酮。TIK-1 菌株可能在受 4-叔丁基苯酚和其他各种 4-烷基苯酚污染的环境的生物修复中有用。