D'Souza Anthony D, Parikh Neal, Kaech Susan M, Shadel Gerald S
Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT 06520-8023, USA.
Mitochondrion. 2007 Dec;7(6):374-85. doi: 10.1016/j.mito.2007.08.001. Epub 2007 Aug 16.
The quantity and activity of mitochondria vary dramatically in tissues and are modulated in response to changing cellular energy demands and environmental factors. The amount of mitochondrial DNA (mtDNA), which encodes essential subunits of the oxidative phosphorylation complexes required for cellular ATP production, is also tightly regulated, but by largely unknown mechanisms. Using murine T cells as a model system, we have addressed how specific signaling pathways influence mitochondrial biogenesis and mtDNA copy number. T cell receptor (TCR) activation results in a large increase in mitochondrial mass and membrane potential and a corresponding amplification of mtDNA, consistent with a vital role for mitochondrial function for growth and proliferation of these cells. Independent activation of protein kinase C (via PMA) or calcium-related pathways (via ionomycin) had differential and sub-maximal effects on these mitochondrial parameters, as did activation of naïve T cells with proliferative cytokines. Thus, the robust mitochondrial biogenesis response observed upon TCR activation requires synergy of multiple downstream signaling pathways. One such pathway involves AMP-activated protein kinase (AMPK), which we show has an unprecedented role in negatively regulating mitochondrial biogenesis that is mammalian target of rapamycin (mTOR)-dependent. That is, inhibition of AMPK after TCR signaling commences results in excessive, but uncoordinated mitochondrial proliferation. Thus mitochondrial biogenesis is not under control of a single master regulatory circuit, but rather requires the convergence of multiple signaling pathways with distinct downstream consequences on the organelle's structure, composition, and function.
线粒体的数量和活性在不同组织中差异极大,并会根据细胞能量需求的变化和环境因素进行调节。线粒体DNA(mtDNA)的数量也受到严格调控,mtDNA编码细胞ATP生成所需的氧化磷酸化复合物的关键亚基,但其调控机制大多未知。我们以小鼠T细胞为模型系统,研究了特定信号通路如何影响线粒体生物合成和mtDNA拷贝数。T细胞受体(TCR)激活导致线粒体质量和膜电位大幅增加,以及mtDNA相应扩增,这与线粒体功能对这些细胞生长和增殖的重要作用一致。蛋白激酶C(通过佛波酯)或钙相关通路(通过离子霉素)的独立激活对这些线粒体参数有不同的、次最大效应,用增殖性细胞因子激活初始T细胞时也是如此。因此,TCR激活后观察到的强大线粒体生物合成反应需要多个下游信号通路的协同作用。其中一条通路涉及AMP激活的蛋白激酶(AMPK),我们发现它在负向调节线粒体生物合成中具有前所未有的作用,且这种作用依赖于哺乳动物雷帕霉素靶蛋白(mTOR)。也就是说,在TCR信号开始后抑制AMPK会导致线粒体过度但不协调的增殖。因此,线粒体生物合成并非受单一主调控回路控制,而是需要多个信号通路汇聚,这些通路对细胞器的结构、组成和功能具有不同的下游影响。