Arczewska Katarzyna D, Kuśmierek Jarosław T
Molecular Biology Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland.
Acta Biochim Pol. 2007;54(3):435-57. Epub 2007 Sep 23.
Since the discovery of the first E. coli mutator gene, mutT, most of the mutations inducing elevated spontaneous mutation rates could be clearly attributed to defects in DNA repair. MutT turned out to be a pyrophosphohydrolase hydrolyzing 8-oxodGTP, thus preventing its incorporation into DNA and suppresing the occurrence of spontaneous AT-->CG transversions. Most of the bacterial mutator genes appeared to be evolutionarily conserved, and scientists were continuously searching for contribution of DNA repair deficiency in human diseases, especially carcinogenesis. Yet a human MutT homologue--hMTH1 protein--was found to be overexpressed rather than inactivated in many human diseases, including cancer. The interest in DNA repair contribution to human diseases exploded with the observation that germline mutations in mismatch repair (MMR) genes predispose to hereditary non-polyposis colorectal cancer (HNPCC). Despite our continuously growing knowledge about DNA repair we still do not fully understand how the mutator phenotype contributes to specific forms of human diseases.
自从发现第一个大肠杆菌突变基因mutT以来,大多数导致自发突变率升高的突变都可明确归因于DNA修复缺陷。结果表明,MutT是一种焦磷酸水解酶,可水解8-氧代鸟嘌呤三磷酸(8-oxodGTP),从而防止其掺入DNA并抑制自发的AT→CG颠换的发生。大多数细菌突变基因似乎在进化上是保守的,科学家们一直在探索DNA修复缺陷在人类疾病尤其是致癌过程中的作用。然而,人们发现一种人类MutT同源物——hMTH1蛋白——在包括癌症在内的许多人类疾病中过度表达而非失活。随着错配修复(MMR)基因的种系突变易患遗传性非息肉病性结直肠癌(HNPCC)这一观察结果的出现,人们对DNA修复在人类疾病中的作用的兴趣激增。尽管我们对DNA修复的了解不断增加,但我们仍然没有完全理解突变体表型如何导致特定形式的人类疾病。