Gennidakis Sam, Rao Srinath, Greenham Katie, Uhrig R Glen, O'Leary Brendan, Snedden Wayne A, Lu Chaofu, Plaxton William C
Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
Plant J. 2007 Dec;52(5):839-49. doi: 10.1111/j.1365-313X.2007.03274.x. Epub 2007 Sep 25.
Two classes of phosphoenolpyruvate carboxylase (PEPC) sharing the same 107-kDa catalytic subunit (p107) were previously purified from developing castor oil seed (COS) endosperm. The association of p107 with an immunologically unrelated 64-kDa polypeptide (p64) causes pronounced physical and kinetic differences between the Class-1 PEPC p107 homotetramer and Class-2 PEPC p107/p64 hetero-octamer. Tryptic peptide sequencing matched p64 to the deduced C-terminal half of several bacterial-type PEPCs (BTPCs) of vascular plants. Immunoblots probed with anti-(COS p64 peptide or p107)-IgG established that: (i) BTPC exists in vivo as an approximately 118-kDa polypeptide (p118) that is rapidly truncated to p64 by an endogenous cysteine endopeptidase during incubation of COS extracts on ice, and (ii) mature and germinated COS contain Class-1 PEPC and p107, but no detectable Class-2 PEPC nor p118. Non-denaturing PAGE, in-gel PEPC activity staining and immunoblotting of developing COS extracts demonstrated that p118 and p107 are subunits of the non-proteolysed approximately 910-kDa Class-2 PEPC complex. As total PEPC activity of clarified COS extracts was unaffected following p118 truncation to p64, the BTPC p118 may function as a regulatory rather than catalytic subunit of the Class-2 PEPC. Moreover, recombinant AtPPC3 and AtPPC4 (Arabidopsis orthologs of COS p107 and p118) expressed as active and inactive PEPCs, respectively. Cloning of cDNAs encoding p118 (RcPpc4) and p107 (RcPpc3) confirmed their respective designation as bacterial- and plant-type PEPCs. Levels of RcPpc3 and RcPpc4 transcripts generally mirrored the respective amounts of p107 and p118. The collective findings provide insights into the molecular features and functional significance of vascular plant BTPCs.
先前从发育中的蓖麻籽(COS)胚乳中纯化出了两类磷酸烯醇丙酮酸羧化酶(PEPC),它们共享相同的107-kDa催化亚基(p107)。p107与一种免疫无关的64-kDa多肽(p64)的结合导致了1类PEPC p107同型四聚体和2类PEPC p107/p64异型八聚体之间明显的物理和动力学差异。胰蛋白酶肽段测序将p64与维管植物几种细菌型PEPC(BTPC)推导的C端后半部分匹配。用抗(COS p64肽或p107)-IgG进行免疫印迹分析表明:(i)BTPC在体内以大约118-kDa的多肽(p118)形式存在,在COS提取物于冰上孵育期间,它会被一种内源性半胱氨酸内肽酶迅速截短为p64;(ii)成熟和萌发的COS含有1类PEPC和p107,但未检测到2类PEPC和p118。对发育中的COS提取物进行非变性聚丙烯酰胺凝胶电泳、凝胶内PEPC活性染色和免疫印迹分析表明,p118和p107是未被蛋白水解的大约910-kDa的2类PEPC复合物的亚基。由于p118截短为p64后,澄清的COS提取物的总PEPC活性未受影响,BTPC p118可能作为2类PEPC的调节亚基而非催化亚基发挥作用。此外,重组的AtPPC3和AtPPC4(分别为COS p107和p118的拟南芥同源物)分别表达为有活性和无活性的PEPC。编码p118(RcPpc4)和p107(RcPpc3)的cDNA的克隆证实了它们分别被指定为细菌型和植物型PEPC。RcPpc3和RcPpc4转录本的水平总体上反映了p107和p118各自的量。这些共同的发现为维管植物BTPC的分子特征和功能意义提供了见解。