Suppr超能文献

V-ATP酶蛋白脂质环中亚基的排列

Arrangement of subunits in the proteolipid ring of the V-ATPase.

作者信息

Wang Yanru, Cipriano Daniel J, Forgac Michael

机构信息

Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.

出版信息

J Biol Chem. 2007 Nov 23;282(47):34058-65. doi: 10.1074/jbc.M704331200. Epub 2007 Sep 25.

Abstract

The vacuolar ATPases (V-ATPases) are multisubunit complexes containing two domains. The V(1) domain (subunits A-H) is peripheral and carries out ATP hydrolysis. The V(0) domain (subunits a, c, c', c'', d, and e) is membrane-integral and carries out proton transport. In yeast, there are three proteolipid subunits as follows: subunit c (Vma3p), subunit c' (Vma11p), and subunit c'' (Vma16p). The proteolipid subunits form a six-membered ring containing single copies of subunits c' and c'' and four copies of subunit c. To determine the possible arrangements of proteolipid subunits in V(0) that give rise to a functional V-ATPase complex, a series of gene fusions was constructed to constrain the arrangement of pairs of subunits in the ring. Fusions containing c'' employed a truncated version of this protein lacking the first putative transmembrane helix (which we have shown previously to be functional), to ensure that the N and C termini of all subunits were located on the luminal side of the membrane. Fusion constructs were expressed in strains disrupted in c', c'', or both but containing a wild copy of c to ensure the presence of the required number of copies of subunit c. The c-c''(DeltaTM1), c''(DeltaTM1)-c', and c'-c constructs all complemented the vma(-) phenotype and gave rise to complexes possessing greater than 25% of wild-type levels of activity. By contrast, neither the c-c', the c'-c''(DeltaTM1), nor the c''(DeltaTM1)-c constructs complemented the vma(-) phenotype. These results suggest that functionally assembled V-ATPase complexes contain the proteolipid subunits arranged in a unique order in the ring.

摘要

液泡型ATP酶(V-ATP酶)是包含两个结构域的多亚基复合物。V1结构域(亚基A-H)位于外周,负责ATP水解。V0结构域(亚基a、c、c'、c''、d和e)整合于膜中,负责质子转运。在酵母中,有三种蛋白脂质亚基,分别如下:亚基c(Vma3p)、亚基c'(Vma11p)和亚基c''(Vma16p)。这些蛋白脂质亚基形成一个六元环,其中包含亚基c'和c''的单拷贝以及亚基c的四个拷贝。为了确定V0中能产生功能性V-ATP酶复合物的蛋白脂质亚基的可能排列方式,构建了一系列基因融合体以限制环中亚基对的排列。包含c''的融合体使用了该蛋白的截短版本,该版本缺少第一个假定的跨膜螺旋(我们之前已证明其具有功能),以确保所有亚基的N端和C端都位于膜的腔侧。融合构建体在c'、c''或两者均缺失但含有c的野生型拷贝的菌株中表达,以确保存在所需数量的亚基c拷贝。c-c''(缺失跨膜螺旋1)、c''(缺失跨膜螺旋1)-c'和c'-c构建体均能互补vma(-)表型,并产生具有高于野生型活性水平25%的复合物。相比之下,c-c'、c'-c''(缺失跨膜螺旋1)和c''(缺失跨膜螺旋1)-c构建体均不能互补vma(-)表型。这些结果表明,功能组装的V-ATP酶复合物包含在环中以独特顺序排列的蛋白脂质亚基。

相似文献

1
Arrangement of subunits in the proteolipid ring of the V-ATPase.
J Biol Chem. 2007 Nov 23;282(47):34058-65. doi: 10.1074/jbc.M704331200. Epub 2007 Sep 25.
2
Topological characterization of the c, c', and c" subunits of the vacuolar ATPase from the yeast Saccharomyces cerevisiae.
J Biol Chem. 2004 Sep 17;279(38):39856-62. doi: 10.1074/jbc.M406767200. Epub 2004 Jul 13.
3
The first putative transmembrane segment of subunit c" (Vma16p) of the yeast V-ATPase is not necessary for function.
J Biol Chem. 2003 Feb 21;278(8):5821-7. doi: 10.1074/jbc.M209875200. Epub 2002 Dec 12.
4
TM2 but not TM4 of subunit c'' interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking.
J Biol Chem. 2004 Oct 22;279(43):44628-38. doi: 10.1074/jbc.M407345200. Epub 2004 Aug 18.
6
Voa1p functions in V-ATPase assembly in the yeast endoplasmic reticulum.
Mol Biol Cell. 2008 Dec;19(12):5131-42. doi: 10.1091/mbc.e08-06-0629. Epub 2008 Sep 17.
7
Assembly of the yeast vacuolar H+-ATPase and ATP hydrolysis occurs in the absence of subunit c''.
FEBS Lett. 2005 Jun 6;579(14):2981-5. doi: 10.1016/j.febslet.2005.04.049.
9
Molecular characterization of the yeast vacuolar H+-ATPase proton pore.
J Biol Chem. 2000 Aug 4;275(31):23654-60. doi: 10.1074/jbc.M004440200.

引用本文的文献

2
V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis.
Theranostics. 2018 Oct 26;8(19):5379-5399. doi: 10.7150/thno.28391. eCollection 2018.
3
The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase V Proton Channel.
Mol Cell. 2018 Mar 15;69(6):993-1004.e3. doi: 10.1016/j.molcel.2018.02.006. Epub 2018 Mar 8.
5
Organelle acidification negatively regulates vacuole membrane fusion in vivo.
Sci Rep. 2016 Jul 1;6:29045. doi: 10.1038/srep29045.
7
Affinity Purification and Structural Features of the Yeast Vacuolar ATPase Vo Membrane Sector.
J Biol Chem. 2015 Nov 13;290(46):27959-71. doi: 10.1074/jbc.M115.662494. Epub 2015 Sep 28.
8
Evolutionary biology: A ratchet for protein complexity.
Nature. 2012 Jan 8;481(7381):270-1. doi: 10.1038/nature10816.
9
Evolution of increased complexity in a molecular machine.
Nature. 2012 Jan 9;481(7381):360-4. doi: 10.1038/nature10724.

本文引用的文献

1
Structure and regulation of the V-ATPases.
J Bioenerg Biomembr. 2005 Dec;37(6):393-8. doi: 10.1007/s10863-005-9478-8.
2
The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase.
Microbiol Mol Biol Rev. 2006 Mar;70(1):177-91. doi: 10.1128/MMBR.70.1.177-191.2006.
3
Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis.
Biol Reprod. 2006 Jan;74(1):185-94. doi: 10.1095/biolreprod.105.043752. Epub 2005 Sep 28.
4
Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae.
Science. 2005 Apr 29;308(5722):654-9. doi: 10.1126/science.1110064. Epub 2005 Mar 31.
5
Renal vacuolar H+-ATPase.
Physiol Rev. 2004 Oct;84(4):1263-314. doi: 10.1152/physrev.00045.2003.
6
Role of Vma21p in assembly and transport of the yeast vacuolar ATPase.
Mol Biol Cell. 2004 Nov;15(11):5075-91. doi: 10.1091/mbc.e04-06-0514. Epub 2004 Sep 8.
8
TM2 but not TM4 of subunit c'' interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking.
J Biol Chem. 2004 Oct 22;279(43):44628-38. doi: 10.1074/jbc.M407345200. Epub 2004 Aug 18.
10
Three-dimensional structure of the vacuolar ATPase. Localization of subunit H by difference imaging and chemical cross-linking.
J Biol Chem. 2004 Oct 1;279(40):41942-9. doi: 10.1074/jbc.M407821200. Epub 2004 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验