Suppr超能文献

DIA-MCIS: an importance sampling network randomizer for network motif discovery and other topological observables in transcription networks.

作者信息

Fusco D, Bassetti B, Jona P, Lagomarsino M Cosentino

机构信息

Università degli Studi di Milano, Dip. Fisica, Via Celoria 16, 20133 Milano, Italy.

出版信息

Bioinformatics. 2007 Dec 15;23(24):3388-90. doi: 10.1093/bioinformatics/btm454. Epub 2007 Sep 27.

Abstract

MOTIVATION

Transcription networks, and other directed networks can be characterized by some topological observables (e.g. network motifs), that require a suitable randomized network ensemble, typically with the same degree sequences of the original ones. The commonly used algorithms sometimes have long convergence times, and sampling problems. We present here an alternative, based on a variant of the importance sampling Monte Carlo developed by (Chen et al.).

AVAILABILITY

The algorithm is available at http://wwwteor.mi.infn.it/bassetti/downloads.html

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验